A Novel Unmanned Surface Vehicle Path-Planning Algorithm Based on A and Artificial Potential Field in Ocean Currents
Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on an artificial potential field (APF) for USV pat...
Gespeichert in:
| Veröffentlicht in: | Journal of marine science and engineering Jg. 12; H. 2; S. 285 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2024
|
| Schlagworte: | |
| ISSN: | 2077-1312, 2077-1312 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on an artificial potential field (APF) for USV path planning in a current environment. There are three main improvements to the A* algorithm. Firstly, the proposed algorithm ignores unnecessary perilous nodes to decrease calculation. Secondly, an adaptive guidance angle is developed to guide the search in the most appropriate direction to reduce the computing time. Thirdly, the potential field force function is introduced into the cost function to ensure that the path designed for the USV always maintains a safe distance from obstacles under the influence of ocean currents. Furthermore, the Bezier curve is adapted to smooth the path. The experimental results show that the USV path-planning algorithm proposed in this paper, which synthesizes the APF and A* algorithms, runs 22.5% faster on average than the traditional A* algorithm. Additionally, the path developed by the proposed A* algorithm effectively keeps appropriate and different distances from obstacles by considering different ocean currents. |
|---|---|
| AbstractList | Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on an artificial potential field (APF) for USV path planning in a current environment. There are three main improvements to the A* algorithm. Firstly, the proposed algorithm ignores unnecessary perilous nodes to decrease calculation. Secondly, an adaptive guidance angle is developed to guide the search in the most appropriate direction to reduce the computing time. Thirdly, the potential field force function is introduced into the cost function to ensure that the path designed for the USV always maintains a safe distance from obstacles under the influence of ocean currents. Furthermore, the Bezier curve is adapted to smooth the path. The experimental results show that the USV path-planning algorithm proposed in this paper, which synthesizes the APF and A* algorithms, runs 22.5% faster on average than the traditional A* algorithm. Additionally, the path developed by the proposed A* algorithm effectively keeps appropriate and different distances from obstacles by considering different ocean currents. |
| Audience | Academic |
| Author | Pan, Jiacai Wei, Kai Jia, Shihao Yang, Chaopeng Lu, Mengjie |
| Author_xml | – sequence: 1 givenname: Chaopeng surname: Yang fullname: Yang, Chaopeng – sequence: 2 givenname: Jiacai surname: Pan fullname: Pan, Jiacai – sequence: 3 givenname: Kai surname: Wei fullname: Wei, Kai – sequence: 4 givenname: Mengjie surname: Lu fullname: Lu, Mengjie – sequence: 5 givenname: Shihao surname: Jia fullname: Jia, Shihao |
| BookMark | eNptUV1rFDEUDVLBWvvmDwj46tR8zWTmcVysFopd0Poa7mRudrPMJDXJCv57U1ehiLkPudx7zuFczktyFmJAQl5zdiXlwN4d1oxcsFp9-4ycC6Z1wyUXZ0_6F-Qy5wOrrxcdZ905KSP9HH_gQu_DCiHgTL8ckwOL9BvuvV2QbqHsm-1Slz7s6LjsYvJlv9L3kCs6BjpSCDMdU_HOWw8L3caCoTx21x6XmfpA7yxCoJtjSnWTX5HnDpaMl3_-C3J__eHr5lNze_fxZjPeNlaxrjQDTnJ2FgYFzrWa99r1IBVKZMCY473UM9OKKWwdOjepiYlJ97PUYuYaQF6Qm5PuHOFgHpJfIf00Ebz5PYhpZ6DarlcaO9lOKiFhsoMSre7BDS3ojivdt7rDqvXmpPWQ4vcj5mIO8ZhCtW_EINnQadGyiro6oXZQRX1wsSSwtWZcva2BOV_no-6ra674UAniRLAp5pzQGesLFB9DJfrFcGYe0zVP062kt_-Q_t72X_gv2lmnEA |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_131173 crossref_primary_10_1109_ACCESS_2025_3587069 crossref_primary_10_3390_jmse12050720 crossref_primary_10_3390_jmse13050934 crossref_primary_10_1038_s41598_025_92406_w crossref_primary_10_3390_biomimetics10030142 crossref_primary_10_3390_jmse12050739 crossref_primary_10_3390_jmse12081268 crossref_primary_10_3390_drones9040273 crossref_primary_10_3390_jmse13061020 crossref_primary_10_1016_j_oceaneng_2025_122599 crossref_primary_10_1016_j_engappai_2024_108583 crossref_primary_10_3390_jmse12122123 crossref_primary_10_1016_j_oceaneng_2025_121871 crossref_primary_10_1016_j_oceaneng_2025_122400 crossref_primary_10_3390_jsan14050087 crossref_primary_10_3390_math12192965 crossref_primary_10_1016_j_oceaneng_2024_118738 |
| Cites_doi | 10.1109/ICInfA.2015.7279630 10.1007/s40815-020-00912-y 10.3390/jmse11081556 10.1017/S0373463322000091 10.1016/j.rcim.2020.102053 10.1016/j.oceaneng.2023.114423 10.1016/j.oceaneng.2020.107043 10.3390/s23177510 10.1007/s00773-015-0355-9 10.1016/j.oceaneng.2023.114595 10.3390/jmse11030645 10.1016/j.oceaneng.2019.04.055 10.1142/S0218001422590091 10.1016/j.ocemod.2016.01.006 10.1016/j.oceaneng.2019.106766 10.1016/j.oceaneng.2022.111928 10.1016/j.asoc.2020.106960 10.1016/j.compeleceng.2020.106773 10.1016/j.robot.2023.104508 10.1016/j.oceaneng.2018.09.016 10.1016/j.oceaneng.2015.01.008 10.1016/j.oceaneng.2021.108709 10.1016/j.oceaneng.2023.114729 10.1016/j.oceaneng.2015.07.030 10.1016/j.oceaneng.2022.113182 10.1016/j.oceaneng.2023.115958 10.1007/s11804-023-00351-9 10.1016/j.oceaneng.2023.113965 10.3390/jmse11061164 10.1007/s11063-021-10536-4 10.1016/j.oceaneng.2022.110852 10.1016/j.oceaneng.2023.115781 10.1007/s00500-015-1750-1 10.3390/app9061057 10.1613/jair.2994 10.1109/JOE.2004.827837 10.1155/2021/8881684 10.1016/j.oceaneng.2022.111328 10.3390/en15197267 10.1016/j.conengprac.2020.104693 10.1016/j.apor.2022.103163 10.1109/LRA.2023.3245409 10.1016/j.oceaneng.2019.04.062 10.1016/j.oceaneng.2023.115433 10.1016/j.oceaneng.2023.115591 10.1109/TSMC.2017.2663523 10.1016/j.isatra.2018.02.003 10.1016/j.oceaneng.2019.106309 10.3390/s23146647 10.1016/j.robot.2016.03.011 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
| DOI | 10.3390/jmse12020285 |
| DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Oceanography |
| EISSN | 2077-1312 |
| ExternalDocumentID | oai_doaj_org_article_cbc63423abc942578af95a761478576e A784041419 10_3390_jmse12020285 |
| GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI |
| ID | FETCH-LOGICAL-c406t-9eb3dfca94aff57187f8a34e3e0a00f1837d07404e5feffb4b02b78d372d17aa3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171834800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-1312 |
| IngestDate | Fri Oct 03 12:43:53 EDT 2025 Fri Jul 25 10:28:02 EDT 2025 Tue Nov 04 18:26:40 EST 2025 Tue Nov 18 21:09:02 EST 2025 Sat Nov 29 07:11:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-9eb3dfca94aff57187f8a34e3e0a00f1837d07404e5feffb4b02b78d372d17aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2930967250?pq-origsite=%requestingapplication% |
| PQID | 2930967250 |
| PQPubID | 2032377 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cbc63423abc942578af95a761478576e proquest_journals_2930967250 gale_infotracacademiconefile_A784041419 crossref_citationtrail_10_3390_jmse12020285 crossref_primary_10_3390_jmse12020285 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of marine science and engineering |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhao (ref_14) 2023; 287 Chi (ref_24) 2021; 99 MahmoudZadeh (ref_53) 2022; 254 Yu (ref_52) 2023; 278 Daniel (ref_35) 2010; 39 Xie (ref_56) 2021; 40 ref_55 Hu (ref_63) 2015; 16 ref_18 Ammar (ref_31) 2016; 20 Zhao (ref_54) 2023; 286 ref_59 Pan (ref_41) 2021; 69 Yoo (ref_44) 2016; 21 ref_61 Zhou (ref_1) 2020; 200 Chou (ref_2) 2022; 248 Gu (ref_20) 2023; 279 ref_21 Liu (ref_48) 2021; 23 Wang (ref_60) 2017; Volume 1 ref_64 Wang (ref_9) 2017; 47 Hao (ref_5) 2023; 286 Peng (ref_8) 2023; 22 Lars (ref_28) 2021; 67 Yazdani (ref_13) 2023; 169 Jin (ref_7) 2023; 288 Gan (ref_23) 2021; 53 ref_26 Zhou (ref_40) 2022; 2022 Zeng (ref_43) 2016; 82 Du (ref_12) 2023; 281 Singh (ref_57) 2018; 169 Ma (ref_49) 2018; 75 Ma (ref_33) 2022; 123 Zhang (ref_11) 2019; 189 Shu (ref_15) 2023; 267 Xie (ref_58) 2022; 41 ref_34 Liu (ref_3) 2020; 37 Song (ref_65) 2021; 100 Gan (ref_36) 2022; 260 Sun (ref_16) 2022; 75 Gao (ref_47) 2010; 22 Wu (ref_30) 2019; 182 Ma (ref_50) 2020; 87 Feng (ref_22) 2022; 26 Bai (ref_29) 2023; 273 Alvarez (ref_62) 2004; 29 Liu (ref_17) 2021; 2021 Niu (ref_27) 2020; 196 Xu (ref_25) 2022; 37 Xie (ref_38) 2019; 184 Guo (ref_32) 2022; 36 Zhang (ref_4) 2023; 8 Liu (ref_39) 2015; 97 Fnadi (ref_10) 2021; 107 Xu (ref_51) 2022; 63 Lee (ref_45) 2015; 107 Li (ref_19) 2022; 32 Subramani (ref_46) 2016; 100 Sang (ref_37) 2021; 223 Wang (ref_42) 2020; 23 ref_6 |
| References_xml | – ident: ref_34 doi: 10.1109/ICInfA.2015.7279630 – volume: 23 start-page: 1797 year: 2020 ident: ref_42 article-title: Hierarchical path planning of unmanned surface vehicles: A fuzzy artificial potential field approach publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00912-y – ident: ref_6 doi: 10.3390/jmse11081556 – ident: ref_26 – volume: 75 start-page: 685 year: 2022 ident: ref_16 article-title: Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment publication-title: J. Navig. doi: 10.1017/S0373463322000091 – volume: 67 start-page: 102053 year: 2021 ident: ref_28 article-title: Path planning of cooperating industrial robots using evolutionary Algorithms publication-title: Robot. Comput. Integer. Manuf. doi: 10.1016/j.rcim.2020.102053 – volume: 278 start-page: 114423 year: 2023 ident: ref_52 article-title: A traversal multi-target path planning method for multi-unmanned surface vessels in space-varying ocean current publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114423 – volume: 200 start-page: 107043 year: 2020 ident: ref_1 article-title: The review unmanned surface vehicle path planning: Based on multi-modality constraint publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107043 – ident: ref_64 doi: 10.3390/s23177510 – volume: 37 start-page: 11 year: 2020 ident: ref_3 article-title: Overview of obstacle avoidance path planning algorithm for unmanned surface vehicle publication-title: Comput. Appl. Softw. – volume: 2022 start-page: 54 year: 2022 ident: ref_40 article-title: 3D obstacle-avoidance for an unmanned aerial vehicle based on the improved artificial potential field method publication-title: J. East China Norm. Univ. (Nat. Sci.) – volume: 26 start-page: 127 year: 2022 ident: ref_22 article-title: Guiding-area RRT path planning algorithm based on A* for intelligent vehicle publication-title: Comput. Syst. Appl. – volume: 21 start-page: 334 year: 2016 ident: ref_44 article-title: Path optimization for marine vehicles in ocean currents using reinforcement learning publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-015-0355-9 – volume: 279 start-page: 114595 year: 2023 ident: ref_20 article-title: An improved RRT algorithm based on prior AIS information and DP compression for ship path planning publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114595 – ident: ref_61 doi: 10.3390/jmse11030645 – volume: 184 start-page: 311 year: 2019 ident: ref_38 article-title: A path planning approach based on multi-direction A* algorithm for ships navigating within wind farm waters publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.055 – volume: 36 start-page: 2259009 year: 2022 ident: ref_32 article-title: An improved a-star algorithm for complete coverage path planning of unmanned ships publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001422590091 – volume: 100 start-page: 57 year: 2016 ident: ref_46 article-title: Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization publication-title: Ocean Model. doi: 10.1016/j.ocemod.2016.01.006 – volume: 196 start-page: 106766 year: 2020 ident: ref_27 article-title: Energy efficient path planning for unmanned surface vehicle inspatially-temporally variant environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106766 – volume: 260 start-page: 111928 year: 2022 ident: ref_36 article-title: Ship path planning based on safety potential field in inland rivers publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111928 – volume: 100 start-page: 106960 year: 2021 ident: ref_65 article-title: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106960 – volume: 41 start-page: 1 year: 2022 ident: ref_58 article-title: Ship path planning and algorithm considering the effect of wind, wave and current publication-title: J. Chongqing Jiaotong Univ. (Nat. Sci.) – volume: 87 start-page: 106773 year: 2020 ident: ref_50 article-title: Obstacle avoidance path planning of unmanned submarine vehicle in ocean current environment based on improved firework-ant colony algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106773 – volume: 169 start-page: 104508 year: 2023 ident: ref_13 article-title: Perception-aware online trajectory generation for a prescribed manoeuvre of unmanned surface vehicle in cluttered unstructured environment publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2023.104508 – volume: 169 start-page: 187 year: 2018 ident: ref_57 article-title: A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.09.016 – volume: 97 start-page: 126 year: 2015 ident: ref_39 article-title: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.01.008 – volume: 223 start-page: 108709 year: 2021 ident: ref_37 article-title: The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108709 – volume: 281 start-page: 114729 year: 2023 ident: ref_12 article-title: Improved indirect adaptive line-of-sight guidance law for path following of under-actuated AUV subject to big ocean currents publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114729 – volume: 107 start-page: 118 year: 2015 ident: ref_45 article-title: Energy efficient path planning for a marine surface vehicle considering heading angle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.07.030 – volume: 267 start-page: 113182 year: 2023 ident: ref_15 article-title: Path planning for ships assisted by the icebreaker in ice-covered waters in the Northern Sea Route based on optimal control publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113182 – volume: 99 start-page: 4926 year: 2021 ident: ref_24 article-title: A generalized Voronoi diagram based efficient heuristic path planning method for RRTs in mobile robots publication-title: IEEE Trans. Ind. Electron. – volume: 22 start-page: 957 year: 2010 ident: ref_47 article-title: Method of Designing Optimal Smooth Way for Vehicle publication-title: J. Syst. Simul. – volume: 40 start-page: 1 year: 2021 ident: ref_56 article-title: Ship path planning in complex water areas under the influence of marine meteorological environment publication-title: J. Chongqing Jiaotong Univ. (Nat. Sci.) – volume: Volume 1 start-page: 534 year: 2017 ident: ref_60 article-title: Research and implementation of global path planning for unmanned surface vehicle based on electronic chart publication-title: Recent Developments in Mechatronics and Intelligent Robotics, Proceedings of the International Conference on Mechatronics and Intelligent Robotics (ICMIR2017), Kunming, China, 20–21 May 2017 – volume: 288 start-page: 115958 year: 2023 ident: ref_7 article-title: DEMRL: Dynamic estimation meta reinforcement learning for path following on unseen unmanned surface vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115958 – volume: 63 start-page: 206 year: 2022 ident: ref_51 article-title: Research on global path planning of unmanned surface vehicle based on environmental optimization publication-title: Shipbuild. China – volume: 22 start-page: 602 year: 2023 ident: ref_8 article-title: Safety-Certificated Line-of-Sight Guidance of Unmanned Surface Vehicles for Straight-Line Following in a Constrained Water Region Subject to Ocean Currents publication-title: J. Mar. Sci. Appl. doi: 10.1007/s11804-023-00351-9 – volume: 273 start-page: 113965 year: 2023 ident: ref_29 article-title: USV path planning algorithm based on plant growth publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113965 – volume: 69 start-page: 1129 year: 2021 ident: ref_41 article-title: An improved artificial potential field method for path planning and formation control of the multi-UAV systems publication-title: IEEE Trans. Circuits Syst. II Express Briefs – ident: ref_59 doi: 10.3390/jmse11061164 – volume: 53 start-page: 3011 year: 2021 ident: ref_23 article-title: Research on robot motion planning based on RRT algorithm with nonholonomic constraints publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10536-4 – volume: 248 start-page: 110852 year: 2022 ident: ref_2 article-title: A novel quantitative and qualitative model for forecasting the navigational risks of Maritime Autonomous Surface Ships publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.110852 – volume: 23 start-page: 83 year: 2021 ident: ref_48 article-title: Optimal design of path algorithm for unmanned surface vessel under complex sea conditions publication-title: J. Mil. Transp. Univ. – volume: 287 start-page: 115781 year: 2023 ident: ref_14 article-title: Data harvesting in uncharted waters: Interactive learning empowered path planning for USV-assisted maritime data collection under fully unknown environments publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115781 – volume: 20 start-page: 4149 year: 2016 ident: ref_31 article-title: Relaxed Dijkstra and A* with linear complexity for robot path planning problems in large scale grid environments publication-title: Soft Comput. doi: 10.1007/s00500-015-1750-1 – ident: ref_55 doi: 10.3390/app9061057 – volume: 39 start-page: 533 year: 2010 ident: ref_35 article-title: Theta*: Any-angle path planning on grids publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2994 – volume: 29 start-page: 418 year: 2004 ident: ref_62 article-title: Evolutionary path planning for autonomous underwater vehicles in a variable ocean publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2004.827837 – volume: 37 start-page: 829 year: 2022 ident: ref_25 article-title: A global path planning algorithm based on improved RRT publication-title: Control Decis. – volume: 2021 start-page: 8881684 year: 2021 ident: ref_17 article-title: Path planning for smart car based on Dijkstra algorithm and dynamic window approach publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/8881684 – volume: 254 start-page: 111328 year: 2022 ident: ref_53 article-title: Uninterrupted path planning system for Multi-USV sampling mission in a cluttered ocean environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111328 – ident: ref_21 doi: 10.3390/en15197267 – volume: 107 start-page: 104693 year: 2021 ident: ref_10 article-title: Constrained Model Predictive Control for dynamic path tracking of a bi-steerable rover on slippery grounds publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104693 – volume: 123 start-page: 103163 year: 2022 ident: ref_33 article-title: A new coverage path planning algorithm for unmanned surface mapping vehicle based on A-star based searching publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2022.103163 – volume: 8 start-page: 2413 year: 2023 ident: ref_4 article-title: SVF-RRT*: A Stream-Based VF-RRT* for USVs Path Planning Considering Ocean Currents publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2023.3245409 – volume: 16 start-page: 368 year: 2015 ident: ref_63 article-title: Characteristics of tide and residual current south of Dongsha island in South China Sea publication-title: J. Army Eng. Univ. PLA (Chin.) – volume: 182 start-page: 162 year: 2019 ident: ref_30 article-title: Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV)and an autonomous underwater vehicle (AUV) in an underwater target strike mission publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.062 – volume: 286 start-page: 115433 year: 2023 ident: ref_54 article-title: Achieving optimal-dynamic path planning for unmanned surface vehicles: A rational multi-objective approach and a sensory-vector re-planner publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115433 – volume: 286 start-page: 115591 year: 2023 ident: ref_5 article-title: Optimal path planning of unmanned surface vehicle under current environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115591 – volume: 47 start-page: 1679 year: 2017 ident: ref_9 article-title: Finite-time trajectory tracking control of a class of nonlinear discrete-time systems publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2017.2663523 – volume: 75 start-page: 137 year: 2018 ident: ref_49 article-title: Multi-objective path planning for unmanned surface vehicle with currents effects publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.02.003 – volume: 189 start-page: 106309 year: 2019 ident: ref_11 article-title: MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106309 – ident: ref_18 doi: 10.3390/s23146647 – volume: 32 start-page: 84 year: 2022 ident: ref_19 article-title: Autonomous underwater vehicles dynamic path planning based on improved D∗ algorithm in ocean current environment publication-title: Chin. High Technol. Lett. – volume: 82 start-page: 61 year: 2016 ident: ref_43 article-title: A comparison of optimization techniques for AUV path planning in environments with ocean currents publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.03.011 |
| SSID | ssj0000826106 |
| Score | 2.3612804 |
| Snippet | Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 285 |
| SubjectTerms | Algorithms Barriers Computing time Cost function Curves Distance Efficiency Energy consumption Genetic algorithms improved A algorithm Literature reviews Ocean Ocean currents Optimization Path planning Planning potential field force Potential fields Surface vehicles Unmanned vehicles USV path planning Vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBal7FAKY-tami0dOmz0UEz8Q46so1MadihZoE3pTTzLT01GYo_E7d_fJ9kp6SHsspsxEpKfnt77Pnj-HmM_jJQYm7AMhpnCQBQqCSDJTCAtKkwpGqLX2X64lZNJ9viopjutvlxNWCsP3BpuYAozdCp1UBjl_QusSoHIt5AZYWV00TeUaodM-RhMqJnITlvpnhCvH_xZbTAipk_5NH2Xg7xU_76A7LPM-BP72MFDnrfb-swOsDphx78NQtVpS39hTc4n9Qsu-axagQuT_O55bcEgf8C5m8anBOuCbTsini-f6vWima_4iFJWyeuK5xyq0q_SCkjwad24siF6GruSNr6ouF-Ud_pNm1M2G9_cX_8KuuYJgaEc3QSKWHJpDSgB1qaUgaTNIBGYYAhhaOkmy5LgQygwtWhtIYowLmRWJjIuIwmQnLHDqq7wnHEaRpa2mWuPLiCOwE2PhrYoCJnHNumxq605temUxV2Di6UmhuGMr3eN32M_30b_bRU19owbuZN5G-N0sP0L8g7deYf-l3f02KU7V-1uK23JQPfTAX2Y073SuSSCKyIRqR7rb49ed9d4owkLEcWTBBO__o_dfGNH9GmiLfrus8Nm_YwX7IN5aRab9Xfvwa9B5PQ4 priority: 102 providerName: Directory of Open Access Journals |
| Title | A Novel Unmanned Surface Vehicle Path-Planning Algorithm Based on A and Artificial Potential Field in Ocean Currents |
| URI | https://www.proquest.com/docview/2930967250 https://doaj.org/article/cbc63423abc942578af95a761478576e |
| Volume | 12 |
| WOSCitedRecordID | wos001171834800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PCBAR dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M7S dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PATMY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEh8a5YaFc-gDggq3k46_iEslVXIMESUVqVk-U4dlu0m5RN2t_P2PFu6aFcuEWOI0804_lmnMk3AG815ybRUU0nuTCUVSKlKs015dYIk6E3NJ5n--QLn8_z01NRhgO3LpRVrn2id9R1q90Z-T7CEkbbHBH74-Vv6rpGua-roYXGfdh2LAmxL9072pyxILxhdDAZ6t1TzO73fy07E2O-j6ia3UIiT9h_l1v2WDN78r9SPoXHIcokxWAWz-CeaZ7Do2_aqCZQVL-AviDz9tosyHGzVM7bkqOrlVXakBNz7h4jJUaHdN3ViBSLM1ypP1-SKSJfTdqGFEQ1tV9l4KEgZdu76iO8mrnKOHLREL8oCTRQ3Us4nh3-OPhEQw8GqhHqeyow2a6tVoIpazMEMm5zlTKTmkhFkUWHwGuMQiJmMmusrVgVJRXP65QndcyVSndgq2kb8woITsPkxuauyzpTSazc4_HEVhUG-IlNR_BhrQ-pA0G565OxkJioOO3Jv7U3gneb2ZcDMccd86ZOtZs5jk7bD7SrMxl2p9SVnjgqRFVp4Z2YsiJTHEMXnqPMZgTvnWFIt-lRJK3Cvwv4Yo4-SxYc82QWs1iMYHdtGDJ4g07eWMXrf99-Aw9RaDZUhe_CVr-6MnvwQF_3F91qDNvTw3n5fezPDcbe1HGs_Py1_PkHnPMHKg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRIIqbzFlgI-UHFAUfPadXxAKAVWXXW7RKKtysk4jt0W7SbtJm3Fn-I3MpPH0ku59cAtSuzEjr_MN5NMvgF4qzk3vnYzZxgJ44SpCBwVRNrh1ggzQGtoap3twwmfTqOjI5GswO_uXxhKq-xsYm2os0LTO_ItpCX0tjky9sezc4eqRtHX1a6ERgOLXfPrCkO28sP4M67vpu-Pvux_2nHaqgKORvKqHIHhY2a1EqGydoCmmdtIBaEJjKtc1yLEeYa86oZmYI21aZi6fsqjLOB-5nGlAjzvHVgNCew9WE3Ge8n35VsdJFT0R4ZNhn0QCHfr57w0no9OmU_lmq9xX10i4CYiqNlt9PB_uy-PYK31o1ncAP8xrJj8CTz4qo3KWxHup1DFbFpcmhk7yOeK-IR9u1hYpQ07NCfUjSXo_zpd3SYWz45xZtXJnG0jt2esyFnMVJ7VV2mUNlhSVJRfhVsjyv1jpzmrL8paoavyGRzcyryfQy8vcvMCGDbD8M1GVEc-VL6nqLs3tGmKIYxvgz6879Zf6laCnSqBzCSGYoQWeR0tfdhctj5rpEduaLdNUFq2IcHwekexOJat_ZE61UMSe1SpFrWZVlYMFEfnjEc4ZtOHdwRESWYNh6RV-3cGTowEwmTMI7wFXuiJPmx0QJStvSvlXxSu__vwG7i3s783kZPxdPcl3McJhE0O_Ab0qsWFeQV39WV1Wi5et48Wgx-3jdo_ji1jMA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUIIqeVTLBTwgYoDijZxsuv4gKqUdsWqZYkErcrJOI7dFu0mZZO26l_j1zFOnKWXcuuBW5TYiZ28zJtJxm8A3irGNFV-7o1irr0o46Enw1h5zGiuh2gNdaOzfbjPptP46IinK_C7Wwtj0yo7m9gY6rxU9hv5AGkJvW2GjD0wLi0i3Rlvnf3ybAUp-6e1K6fRQmRPX11i-FZ9mOzgs96kdLz77eMnz1UY8BQSWe1xDCVzoySPpDFDNNPMxDKMdKh96fsG4c5y5Fg_0kOjjcmizKcZi_OQ0TxgUoZ43juwii55RHuwmk4-p9-XX3iQXNE3GbXZ9mHI_cHPeaUDig4ataWbr_FgUy7gJlJomG68_j_fo4ew5vxrkrQvxCNY0cVjePBFaVk4ce4nUCdkWl7oGTko5tLyDPl6vjBSaXKoT2w3kqJf7HX1nEgyO8aZ1Sdzso2cn5OyIAmRRd5cpVXgIGlZ27wr3BrbnEByWpDmosQJYFVP4eBW5v0MekVZ6OdAsBmGdSa29eUjSQNpuwcjk2UY2lAT9uF9hwWhnDS7rRAyExiiWeSI68jpw-ay9VkrSXJDu20Lq2UbKyTe7CgXx8LZJaEyNbIikDJTvDHf0vChZOi0sRjHrPvwzoJSWHOHQ1LSrdrAiVnhMJGwGG9BEAW8DxsdKIWzg5X4i8gX_z78Bu4hVMX-ZLr3Eu7j-KM2NX4DevXiXL-Cu-qiPq0Wr91bRuDHbYP2DyOqa_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Unmanned+Surface+Vehicle+Path-Planning+Algorithm+Based+on+A+and+Artificial+Potential+Field+in+Ocean+Currents&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Yang%2C+Chaopeng&rft.au=Pan%2C+Jiacai&rft.au=Wei%2C+Kai&rft.au=Lu%2C+Mengjie&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=12&rft.issue=2&rft.spage=285&rft_id=info:doi/10.3390%2Fjmse12020285&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |