Multi-Objective Discrete Brainstorming Optimizer to Solve the Stochastic Multiple-Product Robotic Disassembly Line Balancing Problem Subject to Disassembly Failures

Robots are now widely used in product disassembly lines, which significantly improves end-of-life (EOL) product disassembly efficiency. Most of the current research on disassembly line balancing problems focuses on decomposing one product. More than one product can be disassembled concurrently, whic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 11; číslo 6; s. 1557
Hlavní autori: Xu, Gongdan, Zhang, Zhiwei, Li, Zhiwu, Guo, Xiwang, Qi, Liang, Liu, Xianzhao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2023
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Robots are now widely used in product disassembly lines, which significantly improves end-of-life (EOL) product disassembly efficiency. Most of the current research on disassembly line balancing problems focuses on decomposing one product. More than one product can be disassembled concurrently, which can further improve the efficiency. Moreover, uncertainty such as the depreciation of EOL products, may result in disassembly failure. In this research, a stochastic multi-product robotic disassembly line balancing model is established using an AND/OR graph. It takes the precedence relationship, cycle constraint, and disassembly failure into consideration to maximize the profit and minimize the energy consumption for disassembling multiple products. A Pareto-improved multi-objective brainstorming optimization algorithm combined with stochastic simulation is proposed to solve the problem. Furthermore, by conducting experiments on some real cases and comparing with four state-of-the-art multi-objective optimization algorithms, i.e., the multi-objective discrete gray wolf optimizer, artificial bee colony algorithm, nondominated sorting genetic algorithm II, and multi-objective evolutionary algorithm based on decomposition, this paper validates its excellent performance in solving the concerned problem.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11061557