Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers

Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hyper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 20; s. 3903
Hlavní autoři: Dyachenko, Alexander, Karp, Dmitrii
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
AbstractList Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
Given real parameters a,b,c and integer shifts n[sub.1] ,n[sub.2] ,m, we consider the ratio R(z)=[sub.2] F[sub.1] (a+n[sub.1] ,b+n[sub.2] ;c+m;z)/[sub.2] F[sub.1] (a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
Audience Academic
Author Dyachenko, Alexander
Karp, Dmitrii
Author_xml – sequence: 1
  givenname: Alexander
  surname: Dyachenko
  fullname: Dyachenko, Alexander
– sequence: 2
  givenname: Dmitrii
  orcidid: 0000-0001-8206-3539
  surname: Karp
  fullname: Karp, Dmitrii
BookMark eNptUcFuGyEQRVUiNU1y6wcg9VonLLDAHqOoSSxFSpW2ZzQLrI21XlzAqvz3nXirKKoCB94Mb94MvE_kZEpTIORzw66E6Nj1Fuq6YZwhFh_IGedcLzQGJ2_wR3JZyobh6hphZHdGxuVUwyrDSJ_DLocSpgo1pqnQNNDnF3hEdR3oPexLoQ-HXcirkLah5ujo3X5yM_9PrGv6HTLgTciF_ljHoQZP-wM99sDcBTkdYCzh8t95Tn7dfft5-7B4fLpf3t48Lpxkqi6U971n3kihe6M61TRMKG_MIF2nW9czp93AQCojQ9sIx7wWDp_oes60Ykqck-Ws6xNs7C7HLeSDTRDtMZHyykKu0Y3Bitb3WpreCe-l6sF4MEbyVoCBFpui1pdZa5fT730o1W7SPk84vuWa4x9q1nFkXc2sFaBonIZUMzjcPmyjQ6OGiPkbLaVuJW8kFnydC1xOpeQwvI7ZMPvip33rJ9L5f3QXZ6OwTxzfL_oLjEellw
CitedBy_id crossref_primary_10_3390_math10203903
crossref_primary_10_3390_math11153402
Cites_doi 10.1007/BF01433471
10.1007/s11075-008-9162-2
10.1016/j.jmaa.2012.03.044
10.1134/S1995080221120118
10.1090/proc/14803
10.5802/afst.108
10.1016/j.jmaa.2018.04.021
10.54330/afm.113314
10.7153/jca-05-10
10.1619/fesi.55.255
10.1111/sapm.12437
10.1137/0513073
10.4153/CJM-1987-050-4
10.1080/10236198.2014.946501
10.1137/0510083
10.1007/978-94-010-2196-8
10.1017/CBO9781107325937
10.3390/math10203903
10.1090/S0002-9939-2010-10636-6
10.1016/j.jmaa.2018.03.034
10.1080/10652469.2017.1351964
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10203903
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_35db748bc3dd46ba8da884253a8a56d8
A744754214
10_3390_math10203903
GeographicLocations Israel
GeographicLocations_xml – name: Israel
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-6ddbd0d8437b869611036d88f4c975cb0c7cf0a4684e513c0d73c227cb2076063
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:03:09 EDT 2025
Sun Jul 13 05:24:54 EDT 2025
Tue Nov 04 18:21:43 EST 2025
Sat Nov 29 07:18:11 EST 2025
Tue Nov 18 20:53:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6ddbd0d8437b869611036d88f4c975cb0c7cf0a4684e513c0d73c227cb2076063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8206-3539
OpenAccessLink https://www.proquest.com/docview/2728497092?pq-origsite=%requestingapplication%
PQID 2728497092
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_35db748bc3dd46ba8da884253a8a56d8
proquest_journals_2728497092
gale_infotracacademiconefile_A744754214
crossref_primary_10_3390_math10203903
crossref_citationtrail_10_3390_math10203903
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Belevitch (ref_11) 1982; 13
Berg (ref_30) 2011; 139
Ebisu (ref_26) 2012; 55
ref_13
Dyachenko (ref_14) 2021; 42
Driver (ref_19) 2008; 49
Runckel (ref_8) 1971; 191
Ismail (ref_15) 1979; 10
Karp (ref_18) 2017; 28
Karp (ref_17) 2012; 393
ref_16
Stieltjes (ref_7) 1894; 8
Yamaguchi (ref_28) 2018; 464
Karp (ref_27) 2021; 17
Wimp (ref_12) 1987; 39
Gauss (ref_1) 1812; 2
(ref_10) 2002; 2
ref_24
ref_23
Ebisu (ref_4) 2018; 463
ref_3
ref_2
Baricz (ref_22) 2014; 5
ref_29
ref_9
Long (ref_20) 2021; 47
Agrawal (ref_21) 2014; 20
Karp (ref_25) 2021; 149
ref_5
ref_6
References_xml – volume: 191
  start-page: 53
  year: 1971
  ident: ref_8
  article-title: On the zeros of the hypergeometric function
  publication-title: Math. Ann.
  doi: 10.1007/BF01433471
– ident: ref_9
– ident: ref_5
– ident: ref_3
– volume: 49
  start-page: 143
  year: 2008
  ident: ref_19
  article-title: Interlacing of the zeros of Jacobi polynomials with different parameters
  publication-title: Num. Alg.
  doi: 10.1007/s11075-008-9162-2
– volume: 393
  start-page: 348
  year: 2012
  ident: ref_17
  article-title: Hypergeometric functions as generalized Stieltjes transforms
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.03.044
– volume: 42
  start-page: 2764
  year: 2021
  ident: ref_14
  article-title: Ratios of the Gauss hypergeometric functions with parameters shifted by integers: More on integral representations
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080221120118
– volume: 149
  start-page: 2861
  year: 2021
  ident: ref_25
  article-title: A new identity for a sum of products of the generalized hypergeometric functions
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/14803
– volume: 8
  start-page: J1
  year: 1894
  ident: ref_7
  article-title: Recherches sur les fractions continues
  publication-title: Ann. Fac. Sci. Toulouse
  doi: 10.5802/afst.108
– volume: 464
  start-page: 662
  year: 2018
  ident: ref_28
  article-title: Three-term relations for basic hypergeometric series
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.04.021
– volume: 47
  start-page: 237
  year: 2021
  ident: ref_20
  article-title: Completely monotone sequences and harmonic mappings
  publication-title: Ann. Fenn. Math.
  doi: 10.54330/afm.113314
– volume: 5
  start-page: 115
  year: 2014
  ident: ref_22
  article-title: Mapping properties of basic hypergeometric functions
  publication-title: J. Class. Anal.
  doi: 10.7153/jca-05-10
– volume: 2
  start-page: 1
  year: 1812
  ident: ref_1
  article-title: Disquisitiones generales circa seriem infinitam
  publication-title: Comment. Soc. Regiae Sci. Gottingensis Recent.
– volume: 55
  start-page: 255
  year: 2012
  ident: ref_26
  article-title: Three Term Relations for the Hypergeometric Series
  publication-title: Funkcial. Ekvac.
  doi: 10.1619/fesi.55.255
– ident: ref_6
– volume: 2
  start-page: 597
  year: 2002
  ident: ref_10
  article-title: Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α
  publication-title: Comput. Methods Funct. Theor.
– volume: 17
  start-page: 098
  year: 2021
  ident: ref_27
  article-title: Hypergeometric Functions at Unit Argument: Simple Derivation of Old and New Identities
  publication-title: SIGMA
– ident: ref_29
– ident: ref_2
– ident: ref_16
  doi: 10.1111/sapm.12437
– volume: 13
  start-page: 1024
  year: 1982
  ident: ref_11
  article-title: The Gauss hypergeometric ratio as a positive real function
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0513073
– volume: 39
  start-page: 983
  year: 1987
  ident: ref_12
  article-title: Explicit Formulas for the Associated Jacobi Polynomials and Some Applications
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1987-050-4
– volume: 20
  start-page: 1502
  year: 2014
  ident: ref_21
  article-title: Geometric properties of basic hypergeometric functions
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236198.2014.946501
– volume: 10
  start-page: 5
  year: 1979
  ident: ref_15
  article-title: Special Functions, Stieltjes Transfroms and Infinite Divisibility
  publication-title: Sima J. Math. Anal.
  doi: 10.1137/0510083
– ident: ref_24
  doi: 10.1007/978-94-010-2196-8
– ident: ref_23
  doi: 10.1017/CBO9781107325937
– ident: ref_13
  doi: 10.3390/math10203903
– volume: 139
  start-page: 2121
  year: 2011
  ident: ref_30
  article-title: A one-parameter family of Pick functions defined by the gamma function and related to the volume of the unit ball in n-space
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2010-10636-6
– volume: 463
  start-page: 593
  year: 2018
  ident: ref_4
  article-title: Three-term relations for 3F2(1)
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.03.034
– volume: 28
  start-page: 710
  year: 2017
  ident: ref_18
  article-title: Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652469.2017.1351964
SSID ssj0000913849
Score 2.2032168
Snippet Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We...
Given real parameters a,b,c and integer shifts n[sub.1] ,n[sub.2] ,m, we consider the ratio R(z)=[sub.2] F[sub.1] (a+n[sub.1] ,b+n[sub.2] ;c+m;z)/[sub.2]...
Given real parameters a,b,c and integer shifts n1,n2,m , we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3903
SubjectTerms Asymptotic properties
gauss continued fraction
gauss hypergeometric function
Gaussian processes
Geometrical models
Hypergeometric functions
Integer programming
integral representation
Mathematical analysis
Mathematical research
Parameter estimation
Parameters
Polynomials
Random variables
Ratio and proportion
Ratios
Representations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYh9JAeQps01GladGjIoSzelbR6HN1SJz0kBCcB34Qeu0nAWQevXei_74x2bXwxvfQmxIjVjkaaGWnmG0K-GlZ7FV3IctxNiD6SOSfyzPhYaF9xZqRLxSbUzY2eTs3tVqkvjAnr4IE7xg15Gb0S2gceo5De6eg0Ph1xp10pY0rzzZXZcqbSGWwKroXpIt05-PVDsP-eCnx2M-v6WL0OSlD9uw7kpGXG78hhbx7SUTet92Svao7I2-sNtmp7TGa_OoSHGZ2kKNY-eahp6bymE2ymFoygl27VtvQKXM3FYzV_weJZgY5Bk3X0eAdLbx2GZyHGJr17eq7BAKX-D03fgL4P5GH88_7HVdbXTMgCqOZlJmP0MY9acOW1NBK0Owcu6VoEo8rg86BCnTshtajKgoc8Kh4YU8EzfKOT_ITsN_Om-kioROPGAAHjlahF6QJHnAemCuEMDBmQb2su2tADimNdi5kFxwJ5brd5PiDnG-rXDkhjB913XJANDcJfpw4QCtsLhf2XUAzIBS6nxU0KUwquzzWAH0O4KztSiHMoWCEG5Gy94rbfva1lCpS2Ublhp_9jNp_IAcOkiRQCeEb2l4tV9Zm8Cb-Xz-3iSxLcv_Gx8sI
  priority: 102
  providerName: Directory of Open Access Journals
Title Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
URI https://www.proquest.com/docview/2728497092
https://doaj.org/article/35db748bc3dd46ba8da884253a8a56d8
Volume 10
WOSCitedRecordID wos000873373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oiFsvIBxAFFTWwntk-oRbu0Ql1FW5DKyfIjaSstm7LZInHhtzPjeBcu5cIlsuyxYsvj8Xhm_A0hrzVrnQzWZznuJkQfyawVeaZdKJRrONOVjckm5Gymzs50nQxufQqr3MjEKKhD59FGvs8kCFItc83eX33PMGsUeldTCo3bZBdREooYune6tbEg5iV0GuLdOdzu90ELvCjQ-aY3WbLSSRQB-28Sy_GsmT7431E-JPeTlkkPBrZ4RG41y8fk3skWorV_QhbHA1DEgs5jMGx6g7TsadfSORZjCXrQj_a67-kR3FhX5033DXNweTqFA3GgR1MurS1GeSFUJz29uGxBj6XuJ43_gLqn5Mt08vnDUZZSL2QeTvh1VoXgQh6U4NKpSlegJPAqKNUKr2XpXe6lb3MrKiWasuA-D5J7xqR3DF19FX9GdpbdsnlOaIU6kgYCxhvRitJ6jnARTBbCaugyIu82y2B8wiXH9BgLA_cTXDTz96KNyJst9dWAx3ED3SGu6JYGUbRjRbc6N2lTGl4GJ4VynocgKmdVsArdktwqW8J0R-Qt8oPBvQ5D8jY9WYCJIWqWOZAIlyhYIUZkb8MPJgmB3vxhhhf_bn5J7jJ8VRFjBPfIznp13bwid_yP9WW_GpPdw8msno-juQC-n2Q2jnyO318TaK-PT-qvvwFEqAa4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCvhAxQFFTWwntg8Ilceyq21XVSlSb64fSVtp2ZTNFtQ_xW_E4yQLl3LrgZvljBM7_jzjx_gbgFeKVlZ445IURxOyjyTG8DRR1mfSloyqwsRgE2I6lYeHam8NfvV3YdCtsteJUVH72uEe-RYVQZEqkSr67ux7glGj8HS1D6HRwmJSXvwMS7bm7fhj6N9NSoefDj6Mki6qQOKC8VomhffWp15yJqwsVBHsHyu8lBV3SuTOpk64KjW8kLzMM-ZSL5ijVDhL8RSrYOG91-A6Z1LguJqIZLWngxyboZKtfz1jKt0Ks86TDA_7VB-Vq7N8MUDAZWYg2rbh3f_tr9yDO90smmy3sL8Pa-X8AdzeXVHQNg9hNm6JMGZkPzr7dnes5g2pK7KPyZgKJchnc940ZBRW5Ivjsv6GMcYcGQaD38rjVjXZM-jFhlSk5MvJaRXm6cRekPiNkPcIvl5Jcx_D-ryel0-AFDgHVEGAspJXPDeOIR0GFRk3KhQZwJu-27XreNcx_MdMh_UXgkT_DZIBbK6kz1q-kUvk3iOCVjLIEh4z6sWx7pSOZrm3gkvrmPe8sEZ6I_HYlRlp8tDcAbxG_GnUZaFKznRXMkLDkBVMbwukg-Q04wPY6PGnOyXX6D_ge_rvxy_h5uhgd0fvjKeTZ3CL4g2S6A-5AevLxXn5HG64H8vTZvEijicCR1cN1d8x4VsV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUL0wBuxUMAHKg4o2qztje0DQoWydFW6igpI5RT8SNpK203ZbEH9a_w6ZvJYuJRbD9wiZ5zYyeeZsT3-BuCF4YVTwfooptFE7CORtTKOjAtD7XLBTWLrZBNqOtWHhyZdg1_dWRgKq-x0Yq2oQ-lpjXzAFSpSo2LDB0UbFpHujN-cfY8ogxTttHbpNBqI7OUXP3H6Vr2e7OC_3uJ8_P7zu92ozTAQeTRkyygJwYU4aCmU04lJ0BaKJGhdSG_UyLvYK1_EViZa5qOh8HFQwnOuvOO0o5UIfO41WEeXXPIerKeT_fTraoWHGDexyU20vRAmHqAPejykrT_T5ehq7WCdLuAyo1BbuvHt__kb3YFbrX_NtpsBcRfW8vk92NhfkdNW92E2aSgyZuygDgNuT1_NK1YW7IAu6yuswT7Y86piuzhXXxzl5SllH_NsjK5AI0-L2Cy1FN9GJKXs0_FJgR48cxesfgeWPYAvV9Ldh9Cbl_P8EbCEvEODAlzkspAj6wURZXA1lNZglT686iCQ-ZaRnRKDzDKcmRFgsr8B04etlfRZw0RyidxbQtNKhvjD64JycZS16igTo-CU1M6LEGTirA5W04assNqOsLt9eElYzEjLYZO8bQ9rYMeILyzbVkQUKflQ9mGzw2LWqr8q-wPEx_--_RxuIEKzj5Pp3hO4yeloSR0ouQm95eI8fwrX_Y_lSbV41g4uBt-uGqu_AQtlZZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integral+Representations+of+Ratios+of+the+Gauss+Hypergeometric+Functions+with+Parameters+Shifted+by+Integers&rft.jtitle=Mathematics+%28Basel%29&rft.au=Dyachenko%2C+Alexander&rft.au=Karp%2C+Dmitrii&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=20&rft.spage=3903&rft_id=info:doi/10.3390%2Fmath10203903&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon