Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers
Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hyper...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 10; číslo 20; s. 3903 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.10.2022
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples. |
|---|---|
| AbstractList | Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples. Given real parameters a,b,c and integer shifts n[sub.1] ,n[sub.2] ,m, we consider the ratio R(z)=[sub.2] F[sub.1] (a+n[sub.1] ,b+n[sub.2] ;c+m;z)/[sub.2] F[sub.1] (a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x±i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples. |
| Audience | Academic |
| Author | Dyachenko, Alexander Karp, Dmitrii |
| Author_xml | – sequence: 1 givenname: Alexander surname: Dyachenko fullname: Dyachenko, Alexander – sequence: 2 givenname: Dmitrii orcidid: 0000-0001-8206-3539 surname: Karp fullname: Karp, Dmitrii |
| BookMark | eNptUcFuGyEQRVUiNU1y6wcg9VonLLDAHqOoSSxFSpW2ZzQLrI21XlzAqvz3nXirKKoCB94Mb94MvE_kZEpTIORzw66E6Nj1Fuq6YZwhFh_IGedcLzQGJ2_wR3JZyobh6hphZHdGxuVUwyrDSJ_DLocSpgo1pqnQNNDnF3hEdR3oPexLoQ-HXcirkLah5ujo3X5yM_9PrGv6HTLgTciF_ljHoQZP-wM99sDcBTkdYCzh8t95Tn7dfft5-7B4fLpf3t48Lpxkqi6U971n3kihe6M61TRMKG_MIF2nW9czp93AQCojQ9sIx7wWDp_oes60Ykqck-Ws6xNs7C7HLeSDTRDtMZHyykKu0Y3Bitb3WpreCe-l6sF4MEbyVoCBFpui1pdZa5fT730o1W7SPk84vuWa4x9q1nFkXc2sFaBonIZUMzjcPmyjQ6OGiPkbLaVuJW8kFnydC1xOpeQwvI7ZMPvip33rJ9L5f3QXZ6OwTxzfL_oLjEellw |
| CitedBy_id | crossref_primary_10_3390_math10203903 crossref_primary_10_3390_math11153402 |
| Cites_doi | 10.1007/BF01433471 10.1007/s11075-008-9162-2 10.1016/j.jmaa.2012.03.044 10.1134/S1995080221120118 10.1090/proc/14803 10.5802/afst.108 10.1016/j.jmaa.2018.04.021 10.54330/afm.113314 10.7153/jca-05-10 10.1619/fesi.55.255 10.1111/sapm.12437 10.1137/0513073 10.4153/CJM-1987-050-4 10.1080/10236198.2014.946501 10.1137/0510083 10.1007/978-94-010-2196-8 10.1017/CBO9781107325937 10.3390/math10203903 10.1090/S0002-9939-2010-10636-6 10.1016/j.jmaa.2018.03.034 10.1080/10652469.2017.1351964 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10203903 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_35db748bc3dd46ba8da884253a8a56d8 A744754214 10_3390_math10203903 |
| GeographicLocations | Israel |
| GeographicLocations_xml | – name: Israel |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c406t-6ddbd0d8437b869611036d88f4c975cb0c7cf0a4684e513c0d73c227cb2076063 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:03:09 EDT 2025 Sun Jul 13 05:24:54 EDT 2025 Tue Nov 04 18:21:43 EST 2025 Sat Nov 29 07:18:11 EST 2025 Tue Nov 18 20:53:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-6ddbd0d8437b869611036d88f4c975cb0c7cf0a4684e513c0d73c227cb2076063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8206-3539 |
| OpenAccessLink | https://www.proquest.com/docview/2728497092?pq-origsite=%requestingapplication% |
| PQID | 2728497092 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_35db748bc3dd46ba8da884253a8a56d8 proquest_journals_2728497092 gale_infotracacademiconefile_A744754214 crossref_primary_10_3390_math10203903 crossref_citationtrail_10_3390_math10203903 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Belevitch (ref_11) 1982; 13 Berg (ref_30) 2011; 139 Ebisu (ref_26) 2012; 55 ref_13 Dyachenko (ref_14) 2021; 42 Driver (ref_19) 2008; 49 Runckel (ref_8) 1971; 191 Ismail (ref_15) 1979; 10 Karp (ref_18) 2017; 28 Karp (ref_17) 2012; 393 ref_16 Stieltjes (ref_7) 1894; 8 Yamaguchi (ref_28) 2018; 464 Karp (ref_27) 2021; 17 Wimp (ref_12) 1987; 39 Gauss (ref_1) 1812; 2 (ref_10) 2002; 2 ref_24 ref_23 Ebisu (ref_4) 2018; 463 ref_3 ref_2 Baricz (ref_22) 2014; 5 ref_29 ref_9 Long (ref_20) 2021; 47 Agrawal (ref_21) 2014; 20 Karp (ref_25) 2021; 149 ref_5 ref_6 |
| References_xml | – volume: 191 start-page: 53 year: 1971 ident: ref_8 article-title: On the zeros of the hypergeometric function publication-title: Math. Ann. doi: 10.1007/BF01433471 – ident: ref_9 – ident: ref_5 – ident: ref_3 – volume: 49 start-page: 143 year: 2008 ident: ref_19 article-title: Interlacing of the zeros of Jacobi polynomials with different parameters publication-title: Num. Alg. doi: 10.1007/s11075-008-9162-2 – volume: 393 start-page: 348 year: 2012 ident: ref_17 article-title: Hypergeometric functions as generalized Stieltjes transforms publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.03.044 – volume: 42 start-page: 2764 year: 2021 ident: ref_14 article-title: Ratios of the Gauss hypergeometric functions with parameters shifted by integers: More on integral representations publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080221120118 – volume: 149 start-page: 2861 year: 2021 ident: ref_25 article-title: A new identity for a sum of products of the generalized hypergeometric functions publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/14803 – volume: 8 start-page: J1 year: 1894 ident: ref_7 article-title: Recherches sur les fractions continues publication-title: Ann. Fac. Sci. Toulouse doi: 10.5802/afst.108 – volume: 464 start-page: 662 year: 2018 ident: ref_28 article-title: Three-term relations for basic hypergeometric series publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.04.021 – volume: 47 start-page: 237 year: 2021 ident: ref_20 article-title: Completely monotone sequences and harmonic mappings publication-title: Ann. Fenn. Math. doi: 10.54330/afm.113314 – volume: 5 start-page: 115 year: 2014 ident: ref_22 article-title: Mapping properties of basic hypergeometric functions publication-title: J. Class. Anal. doi: 10.7153/jca-05-10 – volume: 2 start-page: 1 year: 1812 ident: ref_1 article-title: Disquisitiones generales circa seriem infinitam publication-title: Comment. Soc. Regiae Sci. Gottingensis Recent. – volume: 55 start-page: 255 year: 2012 ident: ref_26 article-title: Three Term Relations for the Hypergeometric Series publication-title: Funkcial. Ekvac. doi: 10.1619/fesi.55.255 – ident: ref_6 – volume: 2 start-page: 597 year: 2002 ident: ref_10 article-title: Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α publication-title: Comput. Methods Funct. Theor. – volume: 17 start-page: 098 year: 2021 ident: ref_27 article-title: Hypergeometric Functions at Unit Argument: Simple Derivation of Old and New Identities publication-title: SIGMA – ident: ref_29 – ident: ref_2 – ident: ref_16 doi: 10.1111/sapm.12437 – volume: 13 start-page: 1024 year: 1982 ident: ref_11 article-title: The Gauss hypergeometric ratio as a positive real function publication-title: SIAM J. Math. Anal. doi: 10.1137/0513073 – volume: 39 start-page: 983 year: 1987 ident: ref_12 article-title: Explicit Formulas for the Associated Jacobi Polynomials and Some Applications publication-title: Can. J. Math. doi: 10.4153/CJM-1987-050-4 – volume: 20 start-page: 1502 year: 2014 ident: ref_21 article-title: Geometric properties of basic hypergeometric functions publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236198.2014.946501 – volume: 10 start-page: 5 year: 1979 ident: ref_15 article-title: Special Functions, Stieltjes Transfroms and Infinite Divisibility publication-title: Sima J. Math. Anal. doi: 10.1137/0510083 – ident: ref_24 doi: 10.1007/978-94-010-2196-8 – ident: ref_23 doi: 10.1017/CBO9781107325937 – ident: ref_13 doi: 10.3390/math10203903 – volume: 139 start-page: 2121 year: 2011 ident: ref_30 article-title: A one-parameter family of Pick functions defined by the gamma function and related to the volume of the unit ball in n-space publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-2010-10636-6 – volume: 463 start-page: 593 year: 2018 ident: ref_4 article-title: Three-term relations for 3F2(1) publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.03.034 – volume: 28 start-page: 710 year: 2017 ident: ref_18 article-title: Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652469.2017.1351964 |
| SSID | ssj0000913849 |
| Score | 2.2032168 |
| Snippet | Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We... Given real parameters a,b,c and integer shifts n[sub.1] ,n[sub.2] ,m, we consider the ratio R(z)=[sub.2] F[sub.1] (a+n[sub.1] ,b+n[sub.2] ;c+m;z)/[sub.2]... Given real parameters a,b,c and integer shifts n1,n2,m , we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3903 |
| SubjectTerms | Asymptotic properties gauss continued fraction gauss hypergeometric function Gaussian processes Geometrical models Hypergeometric functions Integer programming integral representation Mathematical analysis Mathematical research Parameter estimation Parameters Polynomials Random variables Ratio and proportion Ratios Representations |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl5NAeSj5auk1adGjIoZjIkmxJxzRkk0IbQtKW3IQ0spvAZresN4X--87I3mUvIZfcjBhheTTS01gzbxj71LaIqqZOBUJTLLSKpghlFQoBMkSqHydzOaBf38zFhb25cZdrpb4oJqynB-4Vd6SqFI22EVRKuo7BpmDp6kgFG6o65TRfYdyaM5X3YFcqq10f6a7Qrz_C899tSddublkfa8CgTNX_2IacUWa8xV4Px0N-3A9rm71opjvs1fcVt2q3yyZfe4aHCb_KUaxD8tC047OWX9FjfsIe_Cw8dB0_R1dz_ruZ3VPxLOBjRLJenv7B8stA4VnEscmvb-9aPIDy-I_nd2DbG_ZzfPrj5LwYaiYUgNC8KOqUYhLJamWiRVUjuivUkm01OFNBFGCgFUHXVjdVqUAko0BKA1HSHV2t3rKN6WzavGMc0JnCTro0tdNQR9tWoildWyYlBaQ0Yp-XWvQwEIpTXYuJR8eCdO7XdT5iByvpPz2RxiNyX2hCVjJEf50b0Cj8YBT-KaMYsUOaTk-LFIcEYcg1wA8juit_bIjnUMtSj9j-csb9sHo7Lw2CtjPCyffPMZo99lJS0kQOAdxnG4v5Q_OBbcLfxV03_5gN9z8a0PNl priority: 102 providerName: Directory of Open Access Journals |
| Title | Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers |
| URI | https://www.proquest.com/docview/2728497092 https://doaj.org/article/35db748bc3dd46ba8da884253a8a56d8 |
| Volume | 10 |
| WOSCitedRecordID | wos000873373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3ojtY-UDiAOymthO7JxQW-3SCrqKtoDKKfIjaSstm3azReLS386M4124lAuXyPJDsTXjGc94_A0hb5oGtKrKPQPVZJkUVjGTZoYljhuL-eN4SAf07bOaTPTZWVFGh1sXwypXMjEIat869JHvcQWCtFBJwT9cXTPMGoW3qzGFxn2yiSgJaQjdO137WBDzEgb18e4CrPs9OAVepHj5VqyyZEVNFAD77xLLQdeMn_zvLJ-Sx_GUSfd7tnhG7tXz5-TRyRqitXtBZsc9UMSMTkMwbHyDNO9o29ApFkMJRtCP5qbr6BFYrIvzuv2BObgcHYNC7PujK5eWBqO8EKqTnl5cNnCOpfYXDf-Aupfk63j05fCIxdQLzIGGX7Lce-sTr6VQVgPF4JAgcq91I12hMmcTp1yTGJlrWWepcIlXwnGunOV41ZeLV2Rj3s7r14Q6sMlgkExVXkiXW91kSZ0WTeoFT5z3A_J-RYbKRVxyTI8xq8A-QaJVfxNtQN6ue1_1eBx39DtAiq77IIp2qGgX51XclJXIvFVSWye8l7k12huN15LCaJPBcgfkHfJDhXsdpuRMfLIAC0PUrGpfIVyi5KkckJ0VP1RRCHTVH2bY-nfzNnnI8VVFiBHcIRvLxU29Sx64n8vLbjEkmwejSTkdBncBfD8pNgx8jt_bEbSXxyfl999PcAdb |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceKMuFPCBigOKmthO7BwQKo9lV7tdVaWg3oIfSVtpu1s2W1D_FL-RGSdZuJRbD9ysxE7s5POMH-PvA3hZVehVVeYjdE02ksKqyCSpiWLHjSX9OB7kgL6O1WSiDw_zvTX41Z2FobDKziYGQ-3njtbIt7lCQ5qrOOdvz75HpBpFu6udhEYDi1F58ROnbPWb4Qf8v1uc9z8evB9ErapA5NB5LaPMe-tjr6VQVmNl0P-JzGtdSZer1NnYKVfFRmZalmkiXOyVcJwrZzntYmUCn3sNrkuhFfWrkYpWazrEsYmVbOLrhcjjbRx1Hie02Zd3qlyt5wsCAZe5geDb-nf_t69yD-60o2i208D-PqyVswdwe3dFQVs_hOmwIcKYsv0Q7NuesZrVbF6xfUqGFJZgn8x5XbMBzsgXR-X8lDTGHOujw2_y01I12zMUxUZUpOzz8UmF43RmL1h4B157BF-upLmPYX02n5UbwBzOObGQTFSWS5dZXaVxmeRV4gWPnfc9eN399sK1vOsk_zEtcP5FICn-BkkPtla5zxq-kUvyvSMErfIQS3i4MF8cFa3RKUTqrZLaOuG9zKzR3mjadhVGmxSb24NXhL-CbBlWyZn2SAY2jFjBih1FdJCSJ7IHmx3-itbI1cUf8D359-0XcHNwsDsuxsPJ6Cnc4nSCJMRDbsL6cnFePoMb7sfypF48D_2JwberhupvFjBbuA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKOADFQcUbWI7sXNAqFCWrtquovJQOQU_krbSsimbLah_jV_HTB4Ll3LrgVvkOImdfJkZ2-PvA3heluhVVeIDdE02kMKqwESxCULHjSX9ON7IAX3eU9OpPjxMszX41e-FobTK3iY2htpXjubIR1yhIU1VmPJR2aVFZNvj16ffA1KQopXWXk6jhchucf4Th2_1q8k2futNzsfvPr7dCTqFgcChI1sGiffWh15LoazGhqEvFInXupQuVbGzoVOuDI1MtCziSLjQK-E4V85yWtFKBN73CqxjSC75ANazyX72ZTXDQ4yb2OQ2216INBxhDHoc0dJf2mt0dX6wkQu4yCk0nm58639-R7fhZhdfs632h7gDa8X8LtzYX5HT1vdgNmkpMmbsoEkD7nZfzWtWleyADpsjvIK9N2d1zXZwrL44KqpvpD7m2BhDgbY-TWKzzFB-G5GUsg_HJyVG8Myes-YZWHYfPl1Kdx_AYF7Ni4fAHI5G8SIZqSSVLrG6jMMiSsvICx4674fwsodA7jpGdhIGmeU4MiPA5H8DZgibq9qnLRPJBfXeEJpWdYg_vCmoFkd5Z45yEXurpLZOeC8Ta7Q3mhZkhdEmxu4O4QVhMScrh01yptusgR0jvrB8SxFRpOSRHMJGj8W8M391_geIj_59-hlcQ4Tme5Pp7mO4zmlrSZMouQGD5eKseAJX3Y_lSb142v1cDL5eNlZ_A-YgZjk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integral+Representations+of+Ratios+of+the+Gauss+Hypergeometric+Functions+with+Parameters+Shifted+by+Integers&rft.jtitle=Mathematics+%28Basel%29&rft.au=Dyachenko%2C+Alexander&rft.au=Karp%2C+Dmitrii&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=20&rft_id=info:doi/10.3390%2Fmath10203903&rft.externalDocID=A744754214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |