Stress-Constrained Topology Optimization for Commercial Software: A Python Implementation for ABAQUS

Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 23; p. 12916
Main Authors: Fernandes, Pedro, Ferrer, Àlex, Gonçalves, Paulo, Parente, Marco, Pinto, Ricardo, Correia, Nuno
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2023
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a new open methodology for solving geometrically complex non-self-adjoint topology optimization problems, including stress-constrained and stress minimization formulations, using validated FEM commercial software. The methodology was validated by comparing the sensitivity analysis with the results obtained through finite differences and solving two benchmark problems with the following optimizers: Optimality Criteria, Method of Moving Asymptotes, Sequential Least-Squares Quadratic Programming (SLSQP), and Trust-constr optimization algorithms. The SLSQP and Trust-constr optimization algorithms obtained better results in stress-minimization problem statements than the methodology available in ABAQUS®. A Python implementation of this methodology is proposed, working in conjunction with the commercial software ABAQUS® 2023 to allow a straightforward application to new problems while benefiting from a graphic user interface and validated finite element solver.
AbstractList Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a new open methodology for solving geometrically complex non-self-adjoint topology optimization problems, including stress-constrained and stress minimization formulations, using validated FEM commercial software. The methodology was validated by comparing the sensitivity analysis with the results obtained through finite differences and solving two benchmark problems with the following optimizers: Optimality Criteria, Method of Moving Asymptotes, Sequential Least-Squares Quadratic Programming (SLSQP), and Trust-constr optimization algorithms. The SLSQP and Trust-constr optimization algorithms obtained better results in stress-minimization problem statements than the methodology available in ABAQUS®. A Python implementation of this methodology is proposed, working in conjunction with the commercial software ABAQUS® 2023 to allow a straightforward application to new problems while benefiting from a graphic user interface and validated finite element solver.
Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a new open methodology for solving geometrically complex non-self-adjoint topology optimization problems, including stress-constrained and stress minimization formulations, using validated FEM commercial software. The methodology was validated by comparing the sensitivity analysis with the results obtained through finite differences and solving two benchmark problems with the following optimizers: Optimality Criteria, Method of Moving Asymptotes, Sequential Least-Squares Quadratic Programming (SLSQP), and Trust-constr optimization algorithms. The SLSQP and Trust-constr optimization algorithms obtained better results in stress-minimization problem statements than the methodology available in ABAQUS[sup.®]. A Python implementation of this methodology is proposed, working in conjunction with the commercial software ABAQUS[sup.®] 2023 to allow a straightforward application to new problems while benefiting from a graphic user interface and validated finite element solver.
Audience Academic
Author Parente, Marco
Pinto, Ricardo
Fernandes, Pedro
Ferrer, Àlex
Gonçalves, Paulo
Correia, Nuno
Author_xml – sequence: 1
  givenname: Pedro
  orcidid: 0000-0002-2708-2160
  surname: Fernandes
  fullname: Fernandes, Pedro
– sequence: 2
  givenname: Àlex
  orcidid: 0000-0003-1011-0230
  surname: Ferrer
  fullname: Ferrer, Àlex
– sequence: 3
  givenname: Paulo
  orcidid: 0000-0003-3126-6365
  surname: Gonçalves
  fullname: Gonçalves, Paulo
– sequence: 4
  givenname: Marco
  orcidid: 0000-0002-3326-6345
  surname: Parente
  fullname: Parente, Marco
– sequence: 5
  givenname: Ricardo
  orcidid: 0000-0002-4869-131X
  surname: Pinto
  fullname: Pinto, Ricardo
– sequence: 6
  givenname: Nuno
  orcidid: 0000-0001-6486-3954
  surname: Correia
  fullname: Correia, Nuno
BookMark eNptUV1rFDEUDVLBWvvmDxjw1an5_vBtXPxYKFTZ9jnczSRrlpnJmEmR9debOqJFvHm44XLO4XDOc3Q2pckj9JLgK8YMfgPzTBhlhBoin6BzipVsGSfq7NH_GbpcliOuYwjTBJ-jfleyX5Z2k6alZIiT75vbNKchHU7NzVziGH9AiWlqQsrNJo2jzy7C0OxSKN8h-7dN13w-la8VsR3nwY9-Kn8J3bvuy93uBXoaYFj85e99ge4-vL_dfGqvbz5uN9116ziWpRXO7fdKOhaCJ8wT3MsguRHaOLUH7TTVnBKivfRC9VT0wHsntFQiAAlesQu0XXX7BEc75zhCPtkE0f46pHywkEt0g7eC8b0HTilTnEvQ4IzmBHANkNAgTNV6tWrNOX2790uxx3Sfp2rfUm0MM0IIUlFXK-oAVTROIdUQXX29H6OrBYVY751SQutqlFXC65XgclqW7MMfmwTbhx7t4x4rnP4Dd3GN96Gs4f-kn7FkoYk
CitedBy_id crossref_primary_10_1016_j_jcsr_2024_109086
crossref_primary_10_1088_1755_1315_1473_1_012008
crossref_primary_10_1016_j_istruc_2025_108563
crossref_primary_10_3390_ma18132972
crossref_primary_10_1007_s00158_024_03877_w
crossref_primary_10_1016_j_cja_2025_103530
Cites_doi 10.1007/BF01214002
10.1016/j.jmsy.2017.03.006
10.1137/S1052623497325107
10.1007/s00158-019-02323-6
10.1016/j.cma.2012.10.019
10.1007/s00158-018-2138-5
10.1002/nme.6662
10.1063/1.3278595
10.1007/s00158-010-0602-y
10.1098/rsta.2003.1177
10.1002/nme.6616
10.1016/S0045-7825(02)00559-5
10.1007/s00158-019-02396-3
10.1002/nme.6858
10.1137/05062723X
10.1007/s00158-012-0780-x
10.1016/0045-7825(88)90086-2
10.1016/j.cma.2019.112777
10.1016/j.compstruc.2019.106104
10.1007/BF01742752
10.1007/s00158-020-02760-8
10.1007/s11831-019-09331-1
10.1007/s00158-020-02629-w
10.1007/s00158-018-2019-y
10.1007/s00158-021-03050-7
10.1007/s00158-013-0978-6
10.1002/nme.6997
10.1007/s00158-020-02719-9
10.1002/nme.484
10.1007/BF01650949
10.1007/s00158-022-03357-z
10.1007/978-3-662-03115-5
10.1016/j.cma.2012.04.004
10.1007/s001580100129
10.1016/j.advengsoft.2015.02.006
10.1002/nme.2138
10.1007/s00158-015-1279-z
10.1007/s00158-010-0487-9
10.1007/s001580050176
10.1007/s00158-012-0759-7
10.1016/0021-9991(88)90002-2
10.1007/s00158-014-1188-6
10.1007/s00158-010-0594-7
10.1016/j.compstruc.2013.04.016
10.1038/s41592-019-0686-2
10.1007/s00158-012-0880-7
10.1007/s00158-008-0336-2
10.1007/s00158-018-2094-0
10.1007/s00158-021-02954-8
10.1007/s00158-020-02552-0
10.1016/j.matdes.2014.06.068
10.1016/j.finel.2007.06.006
10.1007/s00158-015-1294-0
10.1016/j.cma.2018.10.009
10.1007/s00158-014-1054-6
10.1007/s00158-017-1803-4
10.1007/s00158-013-0991-9
10.1007/s00158-009-0440-y
10.1016/j.compstruc.2018.01.008
10.1007/s00158-013-0899-4
10.1007/s00158-020-02573-9
10.1007/BF01202821
10.2514/6.2019-1524
10.1016/j.cad.2016.08.006
10.1007/s00158-004-0495-8
10.1002/nme.7230
10.1007/s00466-008-0312-0
10.1016/j.mechmachtheory.2019.103622
10.1007/s001580050089
10.1016/0045-7825(91)90046-9
10.1016/j.finel.2022.103892
10.1002/nme.1620240207
10.1007/s00158-011-0638-7
10.1007/s00158-018-2084-2
10.1007/s00158-016-1510-6
10.1016/j.compstruc.2019.106136
10.1016/j.cma.2010.03.010
10.1007/s00158-010-0534-6
10.1007/s00158-011-0696-x
10.1016/j.compstruct.2019.111488
10.1016/j.cma.2018.10.010
10.1007/s00158-022-03239-4
10.1007/s004190050248
10.1007/s00158-014-1190-z
10.1007/BF01744697
10.1016/j.cma.2015.02.012
10.1007/BF01195993
10.1007/s00158-009-0430-0
10.1007/s11081-021-09675-3
10.1007/s00158-005-0554-9
10.1016/j.jsv.2013.09.029
10.1016/j.cma.2020.112886
10.2514/6.1998-4906
10.1371/journal.pone.0145041
10.1007/s00158-007-0203-6
10.1007/s00158-014-1157-0
10.1002/nme.1620141203
10.1115/1.4005951
10.1006/jsvi.2001.4075
10.1007/s00158-018-2159-0
10.1007/s00158-014-1107-x
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app132312916
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_534bea42237446a8ac9841a023112f59
A775888673
10_3390_app132312916
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c406t-5ccbb76c3ffe13e10d6f649589c7ba8c82842118e6e57d25da4dc58675fa1fe73
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001117669700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:51:29 EDT 2025
Mon Jun 30 14:52:22 EDT 2025
Tue Nov 04 18:33:11 EST 2025
Sat Nov 29 07:10:35 EST 2025
Tue Nov 18 22:35:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-5ccbb76c3ffe13e10d6f649589c7ba8c82842118e6e57d25da4dc58675fa1fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4869-131X
0000-0002-2708-2160
0000-0002-3326-6345
0000-0003-3126-6365
0000-0003-1011-0230
0000-0001-6486-3954
OpenAccessLink https://doaj.org/article/534bea42237446a8ac9841a023112f59
PQID 2899395551
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_534bea42237446a8ac9841a023112f59
proquest_journals_2899395551
gale_infotracacademiconefile_A775888673
crossref_primary_10_3390_app132312916
crossref_citationtrail_10_3390_app132312916
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Lee (ref_39) 2012; 46
Zhang (ref_4) 2014; 49
ref_99
Saadlaoui (ref_58) 2017; 43
Bruggi (ref_38) 2008; 73
Pedersen (ref_84) 2014; 333
Otomori (ref_26) 2015; 51
Sotiropoulos (ref_35) 2020; 226
Bruggi (ref_95) 2008; 36
Deng (ref_64) 2021; 23
Huang (ref_16) 2010; 41
Kabus (ref_83) 2012; 134
(ref_114) 1998; 16
Osher (ref_12) 1988; 79
Oh (ref_44) 2022; 123
Liu (ref_8) 2014; 50
Norato (ref_50) 2022; 65
JOG (ref_87) 2002; 253
Ferrari (ref_32) 2020; 62
Paulino (ref_36) 2021; 63
Cai (ref_40) 2015; 289
ref_71
Granlund (ref_61) 2023; 124
Bakhtiary (ref_76) 1996; 105
Sigmund (ref_80) 1999; 69
Virtanen (ref_108) 2020; 17
ref_79
Andreassen (ref_7) 2011; 43
Suresh (ref_22) 2010; 42
Sigmund (ref_88) 2003; 361
ref_75
Le (ref_96) 2010; 41
Sigmund (ref_20) 2013; 48
Kikuchi (ref_1) 1988; 71
Miyajima (ref_73) 2023; 216
Sigmund (ref_6) 2001; 21
Wang (ref_5) 2021; 64
(ref_9) 1989; 1
Huang (ref_98) 2009; 43
Du (ref_33) 2022; 65
Zhu (ref_19) 2020; 143
Harzheim (ref_21) 2006; 31
ref_81
Amir (ref_47) 2021; 122
Zuo (ref_17) 2015; 85
ref_86
Stolpe (ref_78) 2001; 22
Meng (ref_91) 2020; 363
Alexandersen (ref_52) 2015; 52
Talischi (ref_23) 2012; 45
Gao (ref_27) 2019; 60
Suresh (ref_42) 2013; 48
Chu (ref_43) 2018; 57
Paulino (ref_68) 2021; 64
Huang (ref_102) 2007; 43
Wang (ref_103) 2011; 43
Sigmund (ref_18) 2011; 43
Wang (ref_13) 2003; 192
Fancello (ref_74) 2020; 362
Deng (ref_56) 2015; 51
Pastore (ref_54) 2019; 224
Holmberg (ref_59) 2014; 50
Mlejnek (ref_77) 1992; 5
Fleury (ref_105) 1979; 14
Luo (ref_45) 2013; 254
Svanberg (ref_82) 1987; 24
Smith (ref_24) 2020; 62
Xia (ref_28) 2015; 52
Burger (ref_51) 2006; 45
Alderliesten (ref_2) 2015; 66
Collet (ref_66) 2017; 55
Amstutz (ref_62) 2012; 233
Aage (ref_29) 2015; 51
Challis (ref_14) 2010; 41
Navarrina (ref_69) 2009; 39
Sigmund (ref_101) 1998; 16
Liang (ref_30) 2020; 61
Zhou (ref_10) 1991; 89
Tortorelli (ref_41) 2018; 58
Chen (ref_34) 2019; 59
Hansen (ref_85) 2005; 29
Senhora (ref_57) 2020; 62
Sanders (ref_25) 2018; 58
Rozvany (ref_11) 1992; 4
Long (ref_70) 2019; 59
Byrd (ref_110) 1999; 9
Yang (ref_37) 2018; 198
Guo (ref_90) 2022; 123
ref_111
ref_113
Yang (ref_97) 2009; 95
Young (ref_15) 1999; 18
Salas (ref_72) 2020; 231
Mirzendehdel (ref_65) 2016; 81
Paris (ref_48) 2010; 199
Meng (ref_92) 2019; 344
Picelli (ref_31) 2021; 63
ref_104
Paris (ref_55) 2013; 125
ref_106
ref_107
ref_109
ref_46
ref_100
Holmberg (ref_53) 2013; 48
Bruggi (ref_67) 2012; 46
Meng (ref_3) 2020; 27
ref_49
Amir (ref_60) 2018; 58
Meng (ref_93) 2021; 122
Tcherniak (ref_89) 2002; 54
Cheng (ref_63) 2019; 344
Buhl (ref_112) 2000; 19
References_xml – volume: 16
  start-page: 68
  year: 1998
  ident: ref_101
  article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Optim.
  doi: 10.1007/BF01214002
– volume: 43
  start-page: 178
  year: 2017
  ident: ref_58
  article-title: Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2017.03.006
– volume: 9
  start-page: 877
  year: 1999
  ident: ref_110
  article-title: An interior point algorithm for large-scale nonlinear programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497325107
– volume: 60
  start-page: 2621
  year: 2019
  ident: ref_27
  article-title: Concurrent topology optimization of multiscale composite structures in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02323-6
– volume: 254
  start-page: 31
  year: 2013
  ident: ref_45
  article-title: An enhanced aggregation method for topology optimization with local stress constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.10.019
– volume: 59
  start-page: 1863
  year: 2019
  ident: ref_34
  article-title: A 213-line topology optimization code for geometrically nonlinear structures
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2138-5
– volume: 122
  start-page: 3241
  year: 2021
  ident: ref_47
  article-title: Efficient stress-constrained topology optimization using inexact design sensitivities
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6662
– volume: 95
  start-page: 261101
  year: 2009
  ident: ref_97
  article-title: Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3278595
– volume: 43
  start-page: 767
  year: 2011
  ident: ref_103
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0602-y
– ident: ref_71
– ident: ref_94
– volume: 361
  start-page: 1001
  year: 2003
  ident: ref_88
  article-title: Systematic design of phononic band–gap materials and structures by topology optimization
  publication-title: Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2003.1177
– volume: 122
  start-page: 2095
  year: 2021
  ident: ref_93
  article-title: Robust topology optimization methodology for continuum structures under probabilistic and fuzzy uncertainties
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6616
– volume: 192
  start-page: 227
  year: 2003
  ident: ref_13
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 61
  start-page: 411
  year: 2020
  ident: ref_30
  article-title: Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02396-3
– volume: 123
  start-page: 339
  year: 2022
  ident: ref_44
  article-title: Stress-constrained topology optimization simultaneously considering the uncertainty of load positions
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6858
– volume: 45
  start-page: 1447
  year: 2006
  ident: ref_51
  article-title: Phase-field relaxation of topology optimization with local stress constraints
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/05062723X
– volume: 46
  start-page: 647
  year: 2012
  ident: ref_39
  article-title: Stress-constrained topology optimization with design-dependent loading
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0780-x
– volume: 71
  start-page: 197
  year: 1988
  ident: ref_1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 362
  start-page: 112777
  year: 2020
  ident: ref_74
  article-title: Stress-constrained level set topology optimization for compliant mechanisms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112777
– volume: 224
  start-page: 106104
  year: 2019
  ident: ref_54
  article-title: Topology optimization of stress-constrained structural elements using risk-factor approach
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.106104
– volume: 4
  start-page: 244
  year: 1992
  ident: ref_11
  article-title: New optimality criteria methods: Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections
  publication-title: Struct. Optim.
  doi: 10.1007/BF01742752
– volume: 63
  start-page: 2065
  year: 2021
  ident: ref_36
  article-title: PolyStress: A Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02760-8
– volume: 27
  start-page: 805
  year: 2020
  ident: ref_3
  article-title: From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09331-1
– volume: 62
  start-page: 2211
  year: 2020
  ident: ref_32
  article-title: A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02629-w
– volume: 58
  start-page: 2053
  year: 2018
  ident: ref_60
  article-title: Achieving stress-constrained topological design via length scale control
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2019-y
– ident: ref_86
– volume: 64
  start-page: 2827
  year: 2021
  ident: ref_5
  article-title: A comprehensive review of educational articles on structural and multidisciplinary optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-03050-7
– ident: ref_106
– volume: 105
  start-page: 745
  year: 1996
  ident: ref_76
  article-title: A new approach for sizing, shape and topology optimization
  publication-title: SAE Trans.
– volume: 48
  start-page: 1031
  year: 2013
  ident: ref_20
  article-title: Topology optimization approaches: A comparative review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0978-6
– volume: 123
  start-page: 4032
  year: 2022
  ident: ref_90
  article-title: Reliability-based topology optimization of continuum structure under buckling and compliance constraints
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6997
– volume: 63
  start-page: 935
  year: 2021
  ident: ref_31
  article-title: A 101-line MATLAB code for topology optimization using binary variables and integer programming
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02719-9
– volume: 54
  start-page: 1605
  year: 2002
  ident: ref_89
  article-title: Topology optimization of resonating structures using SIMP method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.484
– volume: 1
  start-page: 193
  year: 1989
  ident: ref_9
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 65
  start-page: 286
  year: 2022
  ident: ref_50
  article-title: A maximum-rectifier-function approach to stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03357-z
– ident: ref_75
– ident: ref_81
– ident: ref_99
  doi: 10.1007/978-3-662-03115-5
– volume: 233
  start-page: 123
  year: 2012
  ident: ref_62
  article-title: Topological derivative-based topology optimization of structures subject to Drucker–Prager stress constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.04.004
– volume: 22
  start-page: 116
  year: 2001
  ident: ref_78
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580100129
– volume: 85
  start-page: 1
  year: 2015
  ident: ref_17
  article-title: A simple and compact Python code for complex 3D topology optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.02.006
– volume: 73
  start-page: 1693
  year: 2008
  ident: ref_38
  article-title: A mixed FEM approach to stress-constrained topology optimization
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2138
– volume: 52
  start-page: 929
  year: 2015
  ident: ref_52
  article-title: Stress-constrained topology optimization for compliant mechanism design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1279-z
– volume: 41
  start-page: 671
  year: 2010
  ident: ref_16
  article-title: A further review of ESO type methods for topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0487-9
– volume: 21
  start-page: 120
  year: 2001
  ident: ref_6
  article-title: A 99 line topology optimization code written in matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050176
– volume: 46
  start-page: 369
  year: 2012
  ident: ref_67
  article-title: Topology optimization for minimum weight with compliance and stress constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0759-7
– volume: 79
  start-page: 12
  year: 1988
  ident: ref_12
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– volume: 51
  start-page: 987
  year: 2015
  ident: ref_56
  article-title: Multi-constrained topology optimization via the topological sensitivity
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1188-6
– volume: 43
  start-page: 1
  year: 2011
  ident: ref_7
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0594-7
– volume: 125
  start-page: 62
  year: 2013
  ident: ref_55
  article-title: Parallel computing in topology optimization of structures with stress constraints
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.04.016
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_108
  article-title: SciPy 1.2.1: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 48
  start-page: 33
  year: 2013
  ident: ref_53
  article-title: Stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0880-7
– volume: 39
  start-page: 419
  year: 2009
  ident: ref_69
  article-title: Topology optimization of continuum structures with local and global stress constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0336-2
– volume: 58
  start-page: 2727
  year: 2018
  ident: ref_25
  article-title: PolyMat: An efficient Matlab code for multi-material topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2094-0
– volume: 64
  start-page: 3287
  year: 2021
  ident: ref_68
  article-title: Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: A stress aggregation-free approach
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-02954-8
– ident: ref_109
– volume: 62
  start-page: 1579
  year: 2020
  ident: ref_24
  article-title: A MATLAB code for topology optimization using the geometry projection method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02552-0
– volume: 66
  start-page: 421
  year: 2015
  ident: ref_2
  article-title: Designing for damage tolerance in aerospace: A hybrid material technology
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.06.068
– ident: ref_49
– volume: 43
  start-page: 1039
  year: 2007
  ident: ref_102
  article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2007.06.006
– volume: 52
  start-page: 1229
  year: 2015
  ident: ref_28
  article-title: Design of materials using topology optimization and energy-based homogenization approach in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1294-0
– volume: 344
  start-page: 95
  year: 2019
  ident: ref_92
  article-title: Adaptive conjugate single-loop method for efficient reliability-based design and topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.009
– volume: 50
  start-page: 207
  year: 2014
  ident: ref_59
  article-title: Fatigue constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1054-6
– volume: 57
  start-page: 1163
  year: 2018
  ident: ref_43
  article-title: A new method based on adaptive volume constraint and stress penalty for stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1803-4
– volume: 49
  start-page: 417
  year: 2014
  ident: ref_4
  article-title: Topology optimization of thermoelastic structures: Mean compliance minimization or elastic strain energy minimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0991-9
– volume: 41
  start-page: 605
  year: 2010
  ident: ref_96
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0440-y
– volume: 198
  start-page: 23
  year: 2018
  ident: ref_37
  article-title: Stress-constrained topology optimization based on maximum stress measures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.01.008
– volume: 48
  start-page: 295
  year: 2013
  ident: ref_42
  article-title: Stress-constrained topology optimization: A topological level-set approach
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0899-4
– volume: 62
  start-page: 1639
  year: 2020
  ident: ref_57
  article-title: Topology optimization with local stress constraints: A stress aggregation-free approach
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02573-9
– ident: ref_104
– volume: 16
  start-page: 108
  year: 1998
  ident: ref_114
  article-title: A method for treating damage related criteria in optimal topology design of continuum structures
  publication-title: Struct. Optim.
  doi: 10.1007/BF01202821
– ident: ref_100
  doi: 10.2514/6.2019-1524
– volume: 81
  start-page: 1
  year: 2016
  ident: ref_65
  article-title: Support structure constrained topology optimization for additive manufacturing
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2016.08.006
– volume: 29
  start-page: 341
  year: 2005
  ident: ref_85
  article-title: Topology optimization of free vibrations of fiber laser packages
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0495-8
– volume: 124
  start-page: 2818
  year: 2023
  ident: ref_61
  article-title: Stress-constrained topology optimization of structures subjected to nonproportional loading
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.7230
– volume: 43
  start-page: 393
  year: 2009
  ident: ref_98
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0312-0
– volume: 143
  start-page: 103622
  year: 2020
  ident: ref_19
  article-title: Design of compliant mechanisms using continuum topology optimization: A review
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.103622
– volume: 19
  start-page: 93
  year: 2000
  ident: ref_112
  article-title: Stiffness design of geometrically nonlinear structures using topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050089
– volume: 89
  start-page: 309
  year: 1991
  ident: ref_10
  article-title: The COC algorithm, Part II: Topological, geometrical and generalized shape optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(91)90046-9
– volume: 216
  start-page: 103892
  year: 2023
  ident: ref_73
  article-title: Optimal design of compliant displacement magnification mechanisms using stress-constrained topology optimization based on effective energy
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2022.103892
– volume: 24
  start-page: 359
  year: 1987
  ident: ref_82
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620240207
– volume: 43
  start-page: 589
  year: 2011
  ident: ref_18
  article-title: On the usefulness of non-gradient approaches in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0638-7
– volume: 58
  start-page: 2369
  year: 2018
  ident: ref_41
  article-title: Adaptive mesh refinement in stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2084-2
– ident: ref_107
– volume: 55
  start-page: 839
  year: 2017
  ident: ref_66
  article-title: Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1510-6
– volume: 226
  start-page: 106136
  year: 2020
  ident: ref_35
  article-title: Conceptual design of structural systems based on topology optimization and prefabricated components
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.106136
– volume: 199
  start-page: 2110
  year: 2010
  ident: ref_48
  article-title: Stress constraints sensitivity analysis in structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.03.010
– volume: 42
  start-page: 665
  year: 2010
  ident: ref_22
  article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0534-6
– volume: 45
  start-page: 329
  year: 2012
  ident: ref_23
  article-title: PolyTop: A Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0696-x
– volume: 231
  start-page: 111488
  year: 2020
  ident: ref_72
  article-title: Topology optimization of fibers orientation in hyperelastic composite material
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111488
– volume: 344
  start-page: 334
  year: 2019
  ident: ref_63
  article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.010
– volume: 65
  start-page: 158
  year: 2022
  ident: ref_33
  article-title: An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03239-4
– volume: 69
  start-page: 635
  year: 1999
  ident: ref_80
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s004190050248
– volume: 51
  start-page: 1159
  year: 2015
  ident: ref_26
  article-title: Matlab code for a level set-based topology optimization method using a reaction diffusion equation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1190-z
– volume: 5
  start-page: 64
  year: 1992
  ident: ref_77
  article-title: Some aspects of the genesis of structures
  publication-title: Struct. Optim.
  doi: 10.1007/BF01744697
– volume: 289
  start-page: 267
  year: 2015
  ident: ref_40
  article-title: Stress-constrained topology optimization with free-form design domains
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.02.012
– volume: 18
  start-page: 183
  year: 1999
  ident: ref_15
  article-title: 3D and multiple load case bi-directional evolutionary structural optimization (BESO)
  publication-title: Struct. Optim.
  doi: 10.1007/BF01195993
– ident: ref_111
– volume: 41
  start-page: 453
  year: 2010
  ident: ref_14
  article-title: A discrete level-set topology optimization code written in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0430-0
– volume: 23
  start-page: 1733
  year: 2021
  ident: ref_64
  article-title: An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-021-09675-3
– volume: 31
  start-page: 388
  year: 2006
  ident: ref_21
  article-title: A review of optimization of cast parts using topology optimization: II-Topology optimization with manufacturing constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-005-0554-9
– volume: 333
  start-page: 683
  year: 2014
  ident: ref_84
  article-title: Applied topology optimization of vibro-acoustic hearing instrument models
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.09.029
– ident: ref_79
– volume: 363
  start-page: 112886
  year: 2020
  ident: ref_91
  article-title: New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112886
– ident: ref_113
  doi: 10.2514/6.1998-4906
– ident: ref_46
  doi: 10.1371/journal.pone.0145041
– volume: 36
  start-page: 125
  year: 2008
  ident: ref_95
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0203-6
– volume: 51
  start-page: 565
  year: 2015
  ident: ref_29
  article-title: Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1157-0
– volume: 14
  start-page: 1761
  year: 1979
  ident: ref_105
  article-title: Structural weight optimization by dual methods of convex programming
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620141203
– volume: 134
  start-page: 021102
  year: 2012
  ident: ref_83
  article-title: Optimal bearing housing designing using topology optimization
  publication-title: J. Tribol.
  doi: 10.1115/1.4005951
– volume: 253
  start-page: 687
  year: 2002
  ident: ref_87
  article-title: Topology design of structures subjected to periodic loading
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2001.4075
– volume: 59
  start-page: 1747
  year: 2019
  ident: ref_70
  article-title: Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2159-0
– volume: 50
  start-page: 1175
  year: 2014
  ident: ref_8
  article-title: An efficient 3D topology optimization code written in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1107-x
SSID ssj0000913810
Score 2.3203435
SecondaryResourceType review_article
Snippet Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12916
SubjectTerms ABAQUS
Compliance
educational
Equilibrium
Methods
Optimization algorithms
Python
Sensitivity analysis
Software
stress constraints
topology optimization
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3RpYdy4KugbgvIB6pSVRFJHMcOFxSqoiK1dNGCRE-W49ioEuzS3QXEv-9M4t3uBU5cE0exNZOZebHnPYDd1HlMw7WNMLWKCPNtHKnCF2gQrHXTTFQ-bhqFf8jTU3V5WfRCe_Q4HKucxsQmULdsz3RuG4Pwfj209Md8n2ACLwSm-8PbvxFpSNFeaxDUeAWLRLylOrDYO_nZ-z3750IcmCqJ2_PvHNE-7RIjHOOY9EjwfC4zNQT-T4XpJvccr7zsrFdhOdSgrGydZg0W3GAdluaYCddhLXzzY7YXiKk_v4W63zSWRCTy2UhLuJqdtyILj-wXxp6b0NTJsBJm1HpCck74pj7G-gczcgesZL1HYitgDSvxTWh8ah8oj8qzi_4GXBx_O__6PQoqDZHFYmASCWurSuaWe-8S7pK4zn2OsEsVVlZGWYR0GaJM5XInZJ2K2qBrCIVAxZvEO8k3oTMYDtw7YF6mcW4tQkRVZL6gHT0sP4QRSnKFlVMXvkwtpG2gMKflXmuEMmRPPW_PLnycjb5tqTueGHdExp6NIcLt5sJwdKXD96sFzypnMiymJAJoo4wtVJYYYs9LUi9wap_IVTSFBZySNaG7ARdGBFu6lAjMFK6ad2Fr6io6xIux_u8Z75-__QHekOB9e6BmCzqT0Z3bhtf2fvJnPNoJDv8P_UMPFQ
  priority: 102
  providerName: ProQuest
Title Stress-Constrained Topology Optimization for Commercial Software: A Python Implementation for ABAQUS
URI https://www.proquest.com/docview/2899395551
https://doaj.org/article/534bea42237446a8ac9841a023112f59
Volume 13
WOSCitedRecordID wos001117669700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hlgMcUD9AbGkrH0CAUMQmjmO7tyxqBRJsA9tK5WQ5ji1Vahe0u23Vf98Zx61yqbhwTOQotmfsN0_2vAF4W_iAMNy5DKFVZIi340zpoNEgGOsWpWjDOCYKf5fTqTo7082g1BfdCevlgfuJ-yx42XpbIopJZC5WWadVmVuSLcuLIGLqHkY9AzIV92Cdk3RVf9OdI6-n82AkXhzhjUqbDzAoSvU_tiFHlDnagBcpPGR1361NeOLnW_B8IBq4BZtpOS7Zh6QZ_XEbulnM-cio_mas-uA7dtLXP7hlx7gtXKZ8S4ZBKqOsEKq0hH-a4TZ8Yxf-gNWsuSUhARYFgy9TTlL_QT2pf57OXsLp0eHJl69ZKqCQOcTpVSaca1tZOR6Cz7nPx10VKmRESjvZWuWQbZVIAJWvvJBdITqLVhMKOUSwefCSv4K1-Z-5fw0syGJcOYfsTekyaDpsw8hAWKEkVxjUjODT_ZQal9TFabgXBlkGGcAMDTCCdw-t__aqGo-0m5B1HtqQFnZ8gR5ikoeYf3nICN6TbQ2tWOySsynxAAdG2lemlsiZFI6aj2D33vwmLeWlIUbKtcDIcud_9OYNPKOK9f2NmF1YWy2u_B48dder8-ViH9Ynh9Pm1370Znxqvv1oft8Bgjn1mg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Rb9MwED6NDgl4ADZAFAb4gQkQikjiOHGQEMqAadW6UtROGk_GcWyExNrRFqb-KX4jd4lT-jLe9sBr6ja-5Ot9d7bvO4CnsXVIw5UJkFpFgHwbBjJ3Ob4QjHXjRJQurAuF-9lgIE9O8uEG_G5rYehYZesTa0ddTQ2tkb-ixIDnAgn-7dmPgLpG0e5q20KjgcWhXZ5jyjZ_03uP73c3jvc_jN8dBL6rQGCQvBaBMKYss9Rw52zEbRRWqUsxTZC5yUotDaYgCWZF0qZWZFUsKo2mCImBtdORsxnH370CmwmCXXZgc9g7Gn5ereqQyqaMwuaEPed5SPvQmPBxpFVqqb7GfXWLgIuIoGa3_Vv_23O5DTd9HM2KBvhbsGEn23BjTV1xG7a835qz515c-8UdqEZ1cUxAjUrr9hi2YuOmUcSSfUT_eeoLUxlG84zKZ6glFd5phHx1rmf2NSvYcEmKC6xWVj71xVvNF4q94tPx6C4cX4rt96AzmU7sfWAui8PUGExzZZ64nHYlMYQSWsiMS4z-uvCyxYAyXoadzP2uMB0jxKh1xHRhdzX6rJEfuWDcHsFpNYZEw-sL09lX5X2QEjwprU4wIMySJNVSm1wmkSYFwCh2Aqf2jMCoyLXhlIz2FRpoGImEqSLD5FKi1bwLOy0Ylfd5c_UXiQ_-_fETuHYwPuqrfm9w-BCuxziB5oDQDnQWs5_2EVw1vxbf5rPH_u_F4MtlI_cP2TZhqw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC2gBgrsgQoQsmp7vfYaCSGXEhG1hKC0Ujkt6_VuhUSTkgSq_DV-HTP2OuRSbj1wtdcfYz_Pm_HuvAF4FluHNFyZAKlVBMi3YSBzl-MLwVg3TkTpwrpQ-DAbDOTJST5cg99tLQwtq2x9Yu2oq4mhf-S7lBjwXCDB7zq_LGK433t7_iOgDlI009q202ggcmAXF5i-zd709_Fd78Rx7_3Ruw-B7zAQGCSyeSCMKcssNdw5G3EbhVXqUkwZZG6yUkuD6UiCGZK0qRVZFYtKo1lCYpDtdORsxvG812AdQ_Ik6cD6sP9x-GX5h4cUN2UUNqvtOc9DmpPG5I8jxVJ79RUerNsFXEYKNdP17vzPz-gu3PbxNSuaD2ID1ux4E26tqC5uwob3ZzP2wotuv7wH1agumgmogWndNsNW7KhpILFgn9CvnvmCVYZRPqOyGmpVhVcaIY9d6Kl9zQo2XJASA6sVl898UVdzQLFXfD4e3YfjK7H9AXTGk7HdAuayOEyNwfRX5onLabYSQyuhhcy4xKiwC69aPCjj5dnJ3O8K0zRCj1pFTxd2lqPPG1mSS8btEbSWY0hMvN4wmZ4q75uU4ElpdYKBIsI41VKbXCaRJmXAKHYCb-05AVORy8NbMtpXbqBhJB6migyTTolW8y5st8BU3hfO1F9UPvz37qdwA-GqDvuDg0dwM8brN-uGtqEzn_60j-G6-TX_Nps-8V8ag69XDdw_f91qbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress-Constrained+Topology+Optimization+for+Commercial+Software%3A+A+Python+Implementation+for+ABAQUS&rft.jtitle=Applied+sciences&rft.au=Fernandes%2C+Pedro&rft.au=Ferrer%2C+%C3%80lex&rft.au=Gon%C3%A7alves%2C+Paulo&rft.au=Parente%2C+Marco&rft.date=2023-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=23&rft.spage=12916&rft_id=info:doi/10.3390%2Fapp132312916&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app132312916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon