Stress-Constrained Topology Optimization for Commercial Software: A Python Implementation for ABAQUS
Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a...
Saved in:
| Published in: | Applied sciences Vol. 13; no. 23; p. 12916 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2023
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a new open methodology for solving geometrically complex non-self-adjoint topology optimization problems, including stress-constrained and stress minimization formulations, using validated FEM commercial software. The methodology was validated by comparing the sensitivity analysis with the results obtained through finite differences and solving two benchmark problems with the following optimizers: Optimality Criteria, Method of Moving Asymptotes, Sequential Least-Squares Quadratic Programming (SLSQP), and Trust-constr optimization algorithms. The SLSQP and Trust-constr optimization algorithms obtained better results in stress-minimization problem statements than the methodology available in ABAQUS®. A Python implementation of this methodology is proposed, working in conjunction with the commercial software ABAQUS® 2023 to allow a straightforward application to new problems while benefiting from a graphic user interface and validated finite element solver. |
|---|---|
| AbstractList | Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a new open methodology for solving geometrically complex non-self-adjoint topology optimization problems, including stress-constrained and stress minimization formulations, using validated FEM commercial software. The methodology was validated by comparing the sensitivity analysis with the results obtained through finite differences and solving two benchmark problems with the following optimizers: Optimality Criteria, Method of Moving Asymptotes, Sequential Least-Squares Quadratic Programming (SLSQP), and Trust-constr optimization algorithms. The SLSQP and Trust-constr optimization algorithms obtained better results in stress-minimization problem statements than the methodology available in ABAQUS®. A Python implementation of this methodology is proposed, working in conjunction with the commercial software ABAQUS® 2023 to allow a straightforward application to new problems while benefiting from a graphic user interface and validated finite element solver. Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to apply in commercial software, limiting their use in the academic field and hindering their application in the industry. This article presents a new open methodology for solving geometrically complex non-self-adjoint topology optimization problems, including stress-constrained and stress minimization formulations, using validated FEM commercial software. The methodology was validated by comparing the sensitivity analysis with the results obtained through finite differences and solving two benchmark problems with the following optimizers: Optimality Criteria, Method of Moving Asymptotes, Sequential Least-Squares Quadratic Programming (SLSQP), and Trust-constr optimization algorithms. The SLSQP and Trust-constr optimization algorithms obtained better results in stress-minimization problem statements than the methodology available in ABAQUS[sup.®]. A Python implementation of this methodology is proposed, working in conjunction with the commercial software ABAQUS[sup.®] 2023 to allow a straightforward application to new problems while benefiting from a graphic user interface and validated finite element solver. |
| Audience | Academic |
| Author | Parente, Marco Pinto, Ricardo Fernandes, Pedro Ferrer, Àlex Gonçalves, Paulo Correia, Nuno |
| Author_xml | – sequence: 1 givenname: Pedro orcidid: 0000-0002-2708-2160 surname: Fernandes fullname: Fernandes, Pedro – sequence: 2 givenname: Àlex orcidid: 0000-0003-1011-0230 surname: Ferrer fullname: Ferrer, Àlex – sequence: 3 givenname: Paulo orcidid: 0000-0003-3126-6365 surname: Gonçalves fullname: Gonçalves, Paulo – sequence: 4 givenname: Marco orcidid: 0000-0002-3326-6345 surname: Parente fullname: Parente, Marco – sequence: 5 givenname: Ricardo orcidid: 0000-0002-4869-131X surname: Pinto fullname: Pinto, Ricardo – sequence: 6 givenname: Nuno orcidid: 0000-0001-6486-3954 surname: Correia fullname: Correia, Nuno |
| BookMark | eNptUV1rFDEUDVLBWvvmDxjw1an5_vBtXPxYKFTZ9jnczSRrlpnJmEmR9debOqJFvHm44XLO4XDOc3Q2pckj9JLgK8YMfgPzTBhlhBoin6BzipVsGSfq7NH_GbpcliOuYwjTBJ-jfleyX5Z2k6alZIiT75vbNKchHU7NzVziGH9AiWlqQsrNJo2jzy7C0OxSKN8h-7dN13w-la8VsR3nwY9-Kn8J3bvuy93uBXoaYFj85e99ge4-vL_dfGqvbz5uN9116ziWpRXO7fdKOhaCJ8wT3MsguRHaOLUH7TTVnBKivfRC9VT0wHsntFQiAAlesQu0XXX7BEc75zhCPtkE0f46pHywkEt0g7eC8b0HTilTnEvQ4IzmBHANkNAgTNV6tWrNOX2790uxx3Sfp2rfUm0MM0IIUlFXK-oAVTROIdUQXX29H6OrBYVY751SQutqlFXC65XgclqW7MMfmwTbhx7t4x4rnP4Dd3GN96Gs4f-kn7FkoYk |
| CitedBy_id | crossref_primary_10_1016_j_jcsr_2024_109086 crossref_primary_10_1088_1755_1315_1473_1_012008 crossref_primary_10_1016_j_istruc_2025_108563 crossref_primary_10_3390_ma18132972 crossref_primary_10_1007_s00158_024_03877_w crossref_primary_10_1016_j_cja_2025_103530 |
| Cites_doi | 10.1007/BF01214002 10.1016/j.jmsy.2017.03.006 10.1137/S1052623497325107 10.1007/s00158-019-02323-6 10.1016/j.cma.2012.10.019 10.1007/s00158-018-2138-5 10.1002/nme.6662 10.1063/1.3278595 10.1007/s00158-010-0602-y 10.1098/rsta.2003.1177 10.1002/nme.6616 10.1016/S0045-7825(02)00559-5 10.1007/s00158-019-02396-3 10.1002/nme.6858 10.1137/05062723X 10.1007/s00158-012-0780-x 10.1016/0045-7825(88)90086-2 10.1016/j.cma.2019.112777 10.1016/j.compstruc.2019.106104 10.1007/BF01742752 10.1007/s00158-020-02760-8 10.1007/s11831-019-09331-1 10.1007/s00158-020-02629-w 10.1007/s00158-018-2019-y 10.1007/s00158-021-03050-7 10.1007/s00158-013-0978-6 10.1002/nme.6997 10.1007/s00158-020-02719-9 10.1002/nme.484 10.1007/BF01650949 10.1007/s00158-022-03357-z 10.1007/978-3-662-03115-5 10.1016/j.cma.2012.04.004 10.1007/s001580100129 10.1016/j.advengsoft.2015.02.006 10.1002/nme.2138 10.1007/s00158-015-1279-z 10.1007/s00158-010-0487-9 10.1007/s001580050176 10.1007/s00158-012-0759-7 10.1016/0021-9991(88)90002-2 10.1007/s00158-014-1188-6 10.1007/s00158-010-0594-7 10.1016/j.compstruc.2013.04.016 10.1038/s41592-019-0686-2 10.1007/s00158-012-0880-7 10.1007/s00158-008-0336-2 10.1007/s00158-018-2094-0 10.1007/s00158-021-02954-8 10.1007/s00158-020-02552-0 10.1016/j.matdes.2014.06.068 10.1016/j.finel.2007.06.006 10.1007/s00158-015-1294-0 10.1016/j.cma.2018.10.009 10.1007/s00158-014-1054-6 10.1007/s00158-017-1803-4 10.1007/s00158-013-0991-9 10.1007/s00158-009-0440-y 10.1016/j.compstruc.2018.01.008 10.1007/s00158-013-0899-4 10.1007/s00158-020-02573-9 10.1007/BF01202821 10.2514/6.2019-1524 10.1016/j.cad.2016.08.006 10.1007/s00158-004-0495-8 10.1002/nme.7230 10.1007/s00466-008-0312-0 10.1016/j.mechmachtheory.2019.103622 10.1007/s001580050089 10.1016/0045-7825(91)90046-9 10.1016/j.finel.2022.103892 10.1002/nme.1620240207 10.1007/s00158-011-0638-7 10.1007/s00158-018-2084-2 10.1007/s00158-016-1510-6 10.1016/j.compstruc.2019.106136 10.1016/j.cma.2010.03.010 10.1007/s00158-010-0534-6 10.1007/s00158-011-0696-x 10.1016/j.compstruct.2019.111488 10.1016/j.cma.2018.10.010 10.1007/s00158-022-03239-4 10.1007/s004190050248 10.1007/s00158-014-1190-z 10.1007/BF01744697 10.1016/j.cma.2015.02.012 10.1007/BF01195993 10.1007/s00158-009-0430-0 10.1007/s11081-021-09675-3 10.1007/s00158-005-0554-9 10.1016/j.jsv.2013.09.029 10.1016/j.cma.2020.112886 10.2514/6.1998-4906 10.1371/journal.pone.0145041 10.1007/s00158-007-0203-6 10.1007/s00158-014-1157-0 10.1002/nme.1620141203 10.1115/1.4005951 10.1006/jsvi.2001.4075 10.1007/s00158-018-2159-0 10.1007/s00158-014-1107-x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app132312916 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_534bea42237446a8ac9841a023112f59 A775888673 10_3390_app132312916 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c406t-5ccbb76c3ffe13e10d6f649589c7ba8c82842118e6e57d25da4dc58675fa1fe73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001117669700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:51:29 EDT 2025 Mon Jun 30 14:52:22 EDT 2025 Tue Nov 04 18:33:11 EST 2025 Sat Nov 29 07:10:35 EST 2025 Tue Nov 18 22:35:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-5ccbb76c3ffe13e10d6f649589c7ba8c82842118e6e57d25da4dc58675fa1fe73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4869-131X 0000-0002-2708-2160 0000-0002-3326-6345 0000-0003-3126-6365 0000-0003-1011-0230 0000-0001-6486-3954 |
| OpenAccessLink | https://doaj.org/article/534bea42237446a8ac9841a023112f59 |
| PQID | 2899395551 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_534bea42237446a8ac9841a023112f59 proquest_journals_2899395551 gale_infotracacademiconefile_A775888673 crossref_primary_10_3390_app132312916 crossref_citationtrail_10_3390_app132312916 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 Lee (ref_39) 2012; 46 Zhang (ref_4) 2014; 49 ref_99 Saadlaoui (ref_58) 2017; 43 Bruggi (ref_38) 2008; 73 Pedersen (ref_84) 2014; 333 Otomori (ref_26) 2015; 51 Sotiropoulos (ref_35) 2020; 226 Bruggi (ref_95) 2008; 36 Deng (ref_64) 2021; 23 Huang (ref_16) 2010; 41 Kabus (ref_83) 2012; 134 (ref_114) 1998; 16 Osher (ref_12) 1988; 79 Oh (ref_44) 2022; 123 Liu (ref_8) 2014; 50 Norato (ref_50) 2022; 65 JOG (ref_87) 2002; 253 Ferrari (ref_32) 2020; 62 Paulino (ref_36) 2021; 63 Cai (ref_40) 2015; 289 ref_71 Granlund (ref_61) 2023; 124 Bakhtiary (ref_76) 1996; 105 Sigmund (ref_80) 1999; 69 Virtanen (ref_108) 2020; 17 ref_79 Andreassen (ref_7) 2011; 43 Suresh (ref_22) 2010; 42 Sigmund (ref_88) 2003; 361 ref_75 Le (ref_96) 2010; 41 Sigmund (ref_20) 2013; 48 Kikuchi (ref_1) 1988; 71 Miyajima (ref_73) 2023; 216 Sigmund (ref_6) 2001; 21 Wang (ref_5) 2021; 64 (ref_9) 1989; 1 Huang (ref_98) 2009; 43 Du (ref_33) 2022; 65 Zhu (ref_19) 2020; 143 Harzheim (ref_21) 2006; 31 ref_81 Amir (ref_47) 2021; 122 Zuo (ref_17) 2015; 85 ref_86 Stolpe (ref_78) 2001; 22 Meng (ref_91) 2020; 363 Alexandersen (ref_52) 2015; 52 Talischi (ref_23) 2012; 45 Gao (ref_27) 2019; 60 Suresh (ref_42) 2013; 48 Chu (ref_43) 2018; 57 Paulino (ref_68) 2021; 64 Huang (ref_102) 2007; 43 Wang (ref_103) 2011; 43 Sigmund (ref_18) 2011; 43 Wang (ref_13) 2003; 192 Fancello (ref_74) 2020; 362 Deng (ref_56) 2015; 51 Pastore (ref_54) 2019; 224 Holmberg (ref_59) 2014; 50 Mlejnek (ref_77) 1992; 5 Fleury (ref_105) 1979; 14 Luo (ref_45) 2013; 254 Svanberg (ref_82) 1987; 24 Smith (ref_24) 2020; 62 Xia (ref_28) 2015; 52 Burger (ref_51) 2006; 45 Alderliesten (ref_2) 2015; 66 Collet (ref_66) 2017; 55 Amstutz (ref_62) 2012; 233 Aage (ref_29) 2015; 51 Challis (ref_14) 2010; 41 Navarrina (ref_69) 2009; 39 Sigmund (ref_101) 1998; 16 Liang (ref_30) 2020; 61 Zhou (ref_10) 1991; 89 Tortorelli (ref_41) 2018; 58 Chen (ref_34) 2019; 59 Hansen (ref_85) 2005; 29 Senhora (ref_57) 2020; 62 Sanders (ref_25) 2018; 58 Rozvany (ref_11) 1992; 4 Long (ref_70) 2019; 59 Byrd (ref_110) 1999; 9 Yang (ref_37) 2018; 198 Guo (ref_90) 2022; 123 ref_111 ref_113 Yang (ref_97) 2009; 95 Young (ref_15) 1999; 18 Salas (ref_72) 2020; 231 Mirzendehdel (ref_65) 2016; 81 Paris (ref_48) 2010; 199 Meng (ref_92) 2019; 344 Picelli (ref_31) 2021; 63 ref_104 Paris (ref_55) 2013; 125 ref_106 ref_107 ref_109 ref_46 ref_100 Holmberg (ref_53) 2013; 48 Bruggi (ref_67) 2012; 46 Meng (ref_3) 2020; 27 ref_49 Amir (ref_60) 2018; 58 Meng (ref_93) 2021; 122 Tcherniak (ref_89) 2002; 54 Cheng (ref_63) 2019; 344 Buhl (ref_112) 2000; 19 |
| References_xml | – volume: 16 start-page: 68 year: 1998 ident: ref_101 article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct. Optim. doi: 10.1007/BF01214002 – volume: 43 start-page: 178 year: 2017 ident: ref_58 article-title: Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2017.03.006 – volume: 9 start-page: 877 year: 1999 ident: ref_110 article-title: An interior point algorithm for large-scale nonlinear programming publication-title: SIAM J. Optim. doi: 10.1137/S1052623497325107 – volume: 60 start-page: 2621 year: 2019 ident: ref_27 article-title: Concurrent topology optimization of multiscale composite structures in Matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02323-6 – volume: 254 start-page: 31 year: 2013 ident: ref_45 article-title: An enhanced aggregation method for topology optimization with local stress constraints publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.10.019 – volume: 59 start-page: 1863 year: 2019 ident: ref_34 article-title: A 213-line topology optimization code for geometrically nonlinear structures publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2138-5 – volume: 122 start-page: 3241 year: 2021 ident: ref_47 article-title: Efficient stress-constrained topology optimization using inexact design sensitivities publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6662 – volume: 95 start-page: 261101 year: 2009 ident: ref_97 article-title: Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization publication-title: Appl. Phys. Lett. doi: 10.1063/1.3278595 – volume: 43 start-page: 767 year: 2011 ident: ref_103 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0602-y – ident: ref_71 – ident: ref_94 – volume: 361 start-page: 1001 year: 2003 ident: ref_88 article-title: Systematic design of phononic band–gap materials and structures by topology optimization publication-title: Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2003.1177 – volume: 122 start-page: 2095 year: 2021 ident: ref_93 article-title: Robust topology optimization methodology for continuum structures under probabilistic and fuzzy uncertainties publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6616 – volume: 192 start-page: 227 year: 2003 ident: ref_13 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00559-5 – volume: 61 start-page: 411 year: 2020 ident: ref_30 article-title: Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02396-3 – volume: 123 start-page: 339 year: 2022 ident: ref_44 article-title: Stress-constrained topology optimization simultaneously considering the uncertainty of load positions publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6858 – volume: 45 start-page: 1447 year: 2006 ident: ref_51 article-title: Phase-field relaxation of topology optimization with local stress constraints publication-title: SIAM J. Control Optim. doi: 10.1137/05062723X – volume: 46 start-page: 647 year: 2012 ident: ref_39 article-title: Stress-constrained topology optimization with design-dependent loading publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-012-0780-x – volume: 71 start-page: 197 year: 1988 ident: ref_1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – volume: 362 start-page: 112777 year: 2020 ident: ref_74 article-title: Stress-constrained level set topology optimization for compliant mechanisms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112777 – volume: 224 start-page: 106104 year: 2019 ident: ref_54 article-title: Topology optimization of stress-constrained structural elements using risk-factor approach publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2019.106104 – volume: 4 start-page: 244 year: 1992 ident: ref_11 article-title: New optimality criteria methods: Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections publication-title: Struct. Optim. doi: 10.1007/BF01742752 – volume: 63 start-page: 2065 year: 2021 ident: ref_36 article-title: PolyStress: A Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02760-8 – volume: 27 start-page: 805 year: 2020 ident: ref_3 article-title: From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09331-1 – volume: 62 start-page: 2211 year: 2020 ident: ref_32 article-title: A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02629-w – volume: 58 start-page: 2053 year: 2018 ident: ref_60 article-title: Achieving stress-constrained topological design via length scale control publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2019-y – ident: ref_86 – volume: 64 start-page: 2827 year: 2021 ident: ref_5 article-title: A comprehensive review of educational articles on structural and multidisciplinary optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-03050-7 – ident: ref_106 – volume: 105 start-page: 745 year: 1996 ident: ref_76 article-title: A new approach for sizing, shape and topology optimization publication-title: SAE Trans. – volume: 48 start-page: 1031 year: 2013 ident: ref_20 article-title: Topology optimization approaches: A comparative review publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0978-6 – volume: 123 start-page: 4032 year: 2022 ident: ref_90 article-title: Reliability-based topology optimization of continuum structure under buckling and compliance constraints publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6997 – volume: 63 start-page: 935 year: 2021 ident: ref_31 article-title: A 101-line MATLAB code for topology optimization using binary variables and integer programming publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02719-9 – volume: 54 start-page: 1605 year: 2002 ident: ref_89 article-title: Topology optimization of resonating structures using SIMP method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.484 – volume: 1 start-page: 193 year: 1989 ident: ref_9 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 65 start-page: 286 year: 2022 ident: ref_50 article-title: A maximum-rectifier-function approach to stress-constrained topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03357-z – ident: ref_75 – ident: ref_81 – ident: ref_99 doi: 10.1007/978-3-662-03115-5 – volume: 233 start-page: 123 year: 2012 ident: ref_62 article-title: Topological derivative-based topology optimization of structures subject to Drucker–Prager stress constraints publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.04.004 – volume: 22 start-page: 116 year: 2001 ident: ref_78 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580100129 – volume: 85 start-page: 1 year: 2015 ident: ref_17 article-title: A simple and compact Python code for complex 3D topology optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.02.006 – volume: 73 start-page: 1693 year: 2008 ident: ref_38 article-title: A mixed FEM approach to stress-constrained topology optimization publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2138 – volume: 52 start-page: 929 year: 2015 ident: ref_52 article-title: Stress-constrained topology optimization for compliant mechanism design publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1279-z – volume: 41 start-page: 671 year: 2010 ident: ref_16 article-title: A further review of ESO type methods for topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0487-9 – volume: 21 start-page: 120 year: 2001 ident: ref_6 article-title: A 99 line topology optimization code written in matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050176 – volume: 46 start-page: 369 year: 2012 ident: ref_67 article-title: Topology optimization for minimum weight with compliance and stress constraints publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-012-0759-7 – volume: 79 start-page: 12 year: 1988 ident: ref_12 article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – volume: 51 start-page: 987 year: 2015 ident: ref_56 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1188-6 – volume: 43 start-page: 1 year: 2011 ident: ref_7 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0594-7 – volume: 125 start-page: 62 year: 2013 ident: ref_55 article-title: Parallel computing in topology optimization of structures with stress constraints publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.04.016 – volume: 17 start-page: 261 year: 2020 ident: ref_108 article-title: SciPy 1.2.1: Fundamental Algorithms for Scientific Computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 48 start-page: 33 year: 2013 ident: ref_53 article-title: Stress-constrained topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-012-0880-7 – volume: 39 start-page: 419 year: 2009 ident: ref_69 article-title: Topology optimization of continuum structures with local and global stress constraints publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0336-2 – volume: 58 start-page: 2727 year: 2018 ident: ref_25 article-title: PolyMat: An efficient Matlab code for multi-material topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2094-0 – volume: 64 start-page: 3287 year: 2021 ident: ref_68 article-title: Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: A stress aggregation-free approach publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-02954-8 – ident: ref_109 – volume: 62 start-page: 1579 year: 2020 ident: ref_24 article-title: A MATLAB code for topology optimization using the geometry projection method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02552-0 – volume: 66 start-page: 421 year: 2015 ident: ref_2 article-title: Designing for damage tolerance in aerospace: A hybrid material technology publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.06.068 – ident: ref_49 – volume: 43 start-page: 1039 year: 2007 ident: ref_102 article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2007.06.006 – volume: 52 start-page: 1229 year: 2015 ident: ref_28 article-title: Design of materials using topology optimization and energy-based homogenization approach in Matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1294-0 – volume: 344 start-page: 95 year: 2019 ident: ref_92 article-title: Adaptive conjugate single-loop method for efficient reliability-based design and topology optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.009 – volume: 50 start-page: 207 year: 2014 ident: ref_59 article-title: Fatigue constrained topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1054-6 – volume: 57 start-page: 1163 year: 2018 ident: ref_43 article-title: A new method based on adaptive volume constraint and stress penalty for stress-constrained topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-017-1803-4 – volume: 49 start-page: 417 year: 2014 ident: ref_4 article-title: Topology optimization of thermoelastic structures: Mean compliance minimization or elastic strain energy minimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0991-9 – volume: 41 start-page: 605 year: 2010 ident: ref_96 article-title: Stress-based topology optimization for continua publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0440-y – volume: 198 start-page: 23 year: 2018 ident: ref_37 article-title: Stress-constrained topology optimization based on maximum stress measures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2018.01.008 – volume: 48 start-page: 295 year: 2013 ident: ref_42 article-title: Stress-constrained topology optimization: A topological level-set approach publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0899-4 – volume: 62 start-page: 1639 year: 2020 ident: ref_57 article-title: Topology optimization with local stress constraints: A stress aggregation-free approach publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02573-9 – ident: ref_104 – volume: 16 start-page: 108 year: 1998 ident: ref_114 article-title: A method for treating damage related criteria in optimal topology design of continuum structures publication-title: Struct. Optim. doi: 10.1007/BF01202821 – ident: ref_100 doi: 10.2514/6.2019-1524 – volume: 81 start-page: 1 year: 2016 ident: ref_65 article-title: Support structure constrained topology optimization for additive manufacturing publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2016.08.006 – volume: 29 start-page: 341 year: 2005 ident: ref_85 article-title: Topology optimization of free vibrations of fiber laser packages publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-004-0495-8 – volume: 124 start-page: 2818 year: 2023 ident: ref_61 article-title: Stress-constrained topology optimization of structures subjected to nonproportional loading publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.7230 – volume: 43 start-page: 393 year: 2009 ident: ref_98 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput. Mech. doi: 10.1007/s00466-008-0312-0 – volume: 143 start-page: 103622 year: 2020 ident: ref_19 article-title: Design of compliant mechanisms using continuum topology optimization: A review publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.103622 – volume: 19 start-page: 93 year: 2000 ident: ref_112 article-title: Stiffness design of geometrically nonlinear structures using topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050089 – volume: 89 start-page: 309 year: 1991 ident: ref_10 article-title: The COC algorithm, Part II: Topological, geometrical and generalized shape optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(91)90046-9 – volume: 216 start-page: 103892 year: 2023 ident: ref_73 article-title: Optimal design of compliant displacement magnification mechanisms using stress-constrained topology optimization based on effective energy publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2022.103892 – volume: 24 start-page: 359 year: 1987 ident: ref_82 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620240207 – volume: 43 start-page: 589 year: 2011 ident: ref_18 article-title: On the usefulness of non-gradient approaches in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0638-7 – volume: 58 start-page: 2369 year: 2018 ident: ref_41 article-title: Adaptive mesh refinement in stress-constrained topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2084-2 – ident: ref_107 – volume: 55 start-page: 839 year: 2017 ident: ref_66 article-title: Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1510-6 – volume: 226 start-page: 106136 year: 2020 ident: ref_35 article-title: Conceptual design of structural systems based on topology optimization and prefabricated components publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2019.106136 – volume: 199 start-page: 2110 year: 2010 ident: ref_48 article-title: Stress constraints sensitivity analysis in structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.03.010 – volume: 42 start-page: 665 year: 2010 ident: ref_22 article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0534-6 – volume: 45 start-page: 329 year: 2012 ident: ref_23 article-title: PolyTop: A Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0696-x – volume: 231 start-page: 111488 year: 2020 ident: ref_72 article-title: Topology optimization of fibers orientation in hyperelastic composite material publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111488 – volume: 344 start-page: 334 year: 2019 ident: ref_63 article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.010 – volume: 65 start-page: 158 year: 2022 ident: ref_33 article-title: An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03239-4 – volume: 69 start-page: 635 year: 1999 ident: ref_80 article-title: Material interpolation schemes in topology optimization publication-title: Arch. Appl. Mech. doi: 10.1007/s004190050248 – volume: 51 start-page: 1159 year: 2015 ident: ref_26 article-title: Matlab code for a level set-based topology optimization method using a reaction diffusion equation publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1190-z – volume: 5 start-page: 64 year: 1992 ident: ref_77 article-title: Some aspects of the genesis of structures publication-title: Struct. Optim. doi: 10.1007/BF01744697 – volume: 289 start-page: 267 year: 2015 ident: ref_40 article-title: Stress-constrained topology optimization with free-form design domains publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.02.012 – volume: 18 start-page: 183 year: 1999 ident: ref_15 article-title: 3D and multiple load case bi-directional evolutionary structural optimization (BESO) publication-title: Struct. Optim. doi: 10.1007/BF01195993 – ident: ref_111 – volume: 41 start-page: 453 year: 2010 ident: ref_14 article-title: A discrete level-set topology optimization code written in Matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0430-0 – volume: 23 start-page: 1733 year: 2021 ident: ref_64 article-title: An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB publication-title: Optim. Eng. doi: 10.1007/s11081-021-09675-3 – volume: 31 start-page: 388 year: 2006 ident: ref_21 article-title: A review of optimization of cast parts using topology optimization: II-Topology optimization with manufacturing constraints publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-005-0554-9 – volume: 333 start-page: 683 year: 2014 ident: ref_84 article-title: Applied topology optimization of vibro-acoustic hearing instrument models publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.09.029 – ident: ref_79 – volume: 363 start-page: 112886 year: 2020 ident: ref_91 article-title: New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.112886 – ident: ref_113 doi: 10.2514/6.1998-4906 – ident: ref_46 doi: 10.1371/journal.pone.0145041 – volume: 36 start-page: 125 year: 2008 ident: ref_95 article-title: On an alternative approach to stress constraints relaxation in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-007-0203-6 – volume: 51 start-page: 565 year: 2015 ident: ref_29 article-title: Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1157-0 – volume: 14 start-page: 1761 year: 1979 ident: ref_105 article-title: Structural weight optimization by dual methods of convex programming publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620141203 – volume: 134 start-page: 021102 year: 2012 ident: ref_83 article-title: Optimal bearing housing designing using topology optimization publication-title: J. Tribol. doi: 10.1115/1.4005951 – volume: 253 start-page: 687 year: 2002 ident: ref_87 article-title: Topology design of structures subjected to periodic loading publication-title: J. Sound Vib. doi: 10.1006/jsvi.2001.4075 – volume: 59 start-page: 1747 year: 2019 ident: ref_70 article-title: Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2159-0 – volume: 50 start-page: 1175 year: 2014 ident: ref_8 article-title: An efficient 3D topology optimization code written in Matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1107-x |
| SSID | ssj0000913810 |
| Score | 2.3203435 |
| SecondaryResourceType | review_article |
| Snippet | Topology optimization has evidenced its capacity to provide new optimal designs in many different disciplines. However, most novel methods are difficult to... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 12916 |
| SubjectTerms | ABAQUS Compliance educational Equilibrium Methods Optimization algorithms Python Sensitivity analysis Software stress constraints topology optimization |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH6CjgMcgA2mFQbyAQQIRUvqOLG5oAwxwYFR1E0aJ8t5thHS1o62gPbveS9xSy_jxCWHxFFi-eXz-xy_7wN45qo2ZyGnzHgss1IGl7lYYeY1Yq59WxiDndlEfXysz87MOJVHL9K2yhUmdkDdqz3zvm0C4QM_Q14xP2CaII2i6f7t5Y-MPaT4X2sy1LgJWyy8pQewNf74afx1vebCGpi6yPv975LYPv8lJjomadJjw_ONmakT8L8Opru55-je_33r-3A35aCi6YNmG26E6Q7c2VAm3IHt9M0vxMskTP3qAfhJV1iSsclnZy0RvDjpTRauxGfCnotU1CkoExZcesJ2TvSkCWH9bzcPb0QjxlesViA6VeKLVPjU39AcNl9OJw_h9Oj9ybsPWXJpyJCSgWWmENu2rlDGGAoZitxXsSLapQ3WrdNIlK4klqlDFVTtR8q70qPSRFSiK2Ko5S4MprNp2AOh2liEyEdKJPnWHKOPnjBm5MLIqCG8Xo2QxSRhzt09t0RleDzt5ngO4fm69WUv3XFNu0Me7HUbFtzuTszm32z6fq2SZRtcSclUTQTaaYdGl4Vj9bxiFJUZwgsOFcuwQK-ELlU3UMdYYMs2NREzTb2WQ9hfhYpNeLGwfyPj0b8vP4bbbHjfb6jZh8Fy_jM8gVv4a_l9MX-aAv4Pl70SMQ priority: 102 providerName: ProQuest |
| Title | Stress-Constrained Topology Optimization for Commercial Software: A Python Implementation for ABAQUS |
| URI | https://www.proquest.com/docview/2899395551 https://doaj.org/article/534bea42237446a8ac9841a023112f59 |
| Volume | 13 |
| WOSCitedRecordID | wos001117669700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB2hwgEOFS0gFkrlAwgQitis48TmlkWt4MAS2FYqJ8sZ2xISXardBdS_Z8Zxq1wqLlwiJXIU2zP2zFM87wE8d3U_ZSKnwnisikoGV7hYY-E14lT7vjQGk9hEs1joszPTjaS--EzYQA88TNxbJas-uIqiWEPIxWmHRlelY9qychZVKt2jrGcEptIebEqmrhpOukvC9fw_mICXpPDG0uajGJSo-m_akFOUOb4Puzk9FO3QrT24FVb7cG9EGrgPe3k5bsSrzBn9-gH4Zar5KFh_M6k-BC9OBv2DS_GZtoXzXG8pKEkVXBXCSkv0pSVtw3_cOrwTregumUhAJMLg81yTNLzQztsvp8uHcHp8dPL-Q5EFFAqkOL0tFGLfNzXKGEMpQzn1dawJEWmDTe80EtqqCADqUAfV-JnyrvKoNGGI6MoYGvkIdlY_V-ExCNXHMkS-Uo7Hr04x-uhp-c9cmBk1gTdXU2oxs4vzcH9YQhlsADs2wAReXLe-GFg1bmg3Z-tct2Eu7PSAPMRmD7H_8pAJvGTbWl6x1CV0ufCABsbcV7ZtCDNpGrWcwMGV-W1eyhvLiFQaRZnlk__Rm6dwlxXrhxMxB7CzXf8Kz-AO_t5-36wP4fb8aNF9PUzeTHfdx0_dt788-_i2 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIlyAFpADRTYAxUgZGF71_YaCSEXqBq1DUFJpXIy6_1ASDQpSaDKn-I3MmOvQy7l1gMXH-xd22s_z4d35z2ApyqtQiJyCnKjRSC4VYFyqQ6M1DqUporyXNdiE1m_L09P88Ea_G5rYWhZZWsTa0NtJpr-kb-ixIDnCTr4t-c_AlKNotnVVkKjgcWhXVxgyjZ703uP73c3jvc_jN4dBF5VINDovOZBonVVZanmztmI2yg0qUsxTZC5ziolNaYgArMiaVObZCZOjBJGJxIDa6ciZzOO570G6wLBLjuwPugdDz4v_-oQy6aMwmaFPed5SPPQmPBxdKskqb7i-2qJgMscQe3d9m__b8_lDtzycTQrGuBvwpodb8HNFXbFLdj0dmvGnnty7Rd3wQzr4piAhEpreQxr2KgRiliwj2g_z3xhKsNonlH5DElS4ZWG6K8u1NS-ZgUbLIhxgdXMyme-eKvpUOwVn06G9-DkSsZ-HzrjydhuA0sqF1lHWwyGqWuonXEG7WSsbJwnXXjZYqDUnoadhvu9xHSMEFOuIqYLu8vW5w39yCXt9ghOyzZEGl7vmEy_lt4GlQkXlVUCA8JMiFRJpXMpIkUMgFHskrwLzwiMJZk2vCWtfIUGDoxIwsoiw-RS4qh5F3ZaMJbe5s3Kv0h88O_DT-DGwej4qDzq9Q8fwkaMN9AsENqBznz60z6C6_rX_Nts-th_Xgy-XDVy_wDIEmTH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUJlAbSAGigwCypAlVXb48cMEkIuJSIqhKC0UlmZ8TwQEk1KEqjya3wd99rjkE3ZdcHGC3vG9thn7sOeew7AU5VVIRE5BdLoJEi4VYFymQ6M0DoUpoqk1LXYRD4YiNNTOVyD320tDC2rbG1ibajNRNM38n1KDLhM0cHvO78sYnjYe33-IyAFKfrT2sppNBA5sosLTN9mr_qH-K5347j39vjNu8ArDAQaHdk8SLWuqjzT3DkbcRuFJnMZpgxC6rxSQmM6kmCGJGxm09zEqVGJ0anAINupyNmc43mvwTqG5EnSgfVh_8Pw8_ILDzFuiihsVttzLkP6J43JH0cXS_LqK36wlgu4zCnUnq53-39-Rnfglo-vWdFMiE1Ys-MtuLnCurgFm96ezdhzT7r94i6YUV00E5CAaS2bYQ07bgQkFuwj2tUzX7DKMMpnVFZDUlV4pRH6sQs1tS9ZwYYLYmJgNePymS_qajoUB8Wnk9E9OLmSsd-HzngyttvA0spF1tEWg2TqGmpnnEH7GSsby7QLey0eSu3p2Wm430tM0wg95Sp6urC7bH3e0JJc0u6AoLVsQ2Ti9Y7J9GvpbVOZ8qSyKsFAEWGcKaG0FEmkiBkwil0qu_CMgFmSycNb0spXbuDAiDysLHJMOgWOmndhpwVm6W3hrPyLygf_PvwEbiBcy_f9wdFD2Ijx-s26oR3ozKc_7SO4rn_Nv82mj_1MY_DlqoH7B4pdbYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress-Constrained+Topology+Optimization+for+Commercial+Software%3A+A+Python+Implementation+for+ABAQUS&rft.jtitle=Applied+sciences&rft.au=Pedro+Fernandes&rft.au=%C3%80lex+Ferrer&rft.au=Paulo+Gon%C3%A7alves&rft.au=Marco+Parente&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=23&rft.spage=12916&rft_id=info:doi/10.3390%2Fapp132312916&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_534bea42237446a8ac9841a023112f59 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |