Two symbolic algorithms for solving general periodic pentadiagonal linear systems
In this paper, we present two novel symbolic computational algorithms to solve periodic pentadiagonal (PP) linear systems. These two algorithms are based on a special matrix decomposition and the use of any fast pentadiagonal linear solver, respectively. Some numerical examples are given in order to...
Uložené v:
| Vydané v: | Computers & mathematics with applications (1987) Ročník 69; číslo 9; s. 1020 - 1029 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2015
|
| Predmet: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we present two novel symbolic computational algorithms to solve periodic pentadiagonal (PP) linear systems. These two algorithms are based on a special matrix decomposition and the use of any fast pentadiagonal linear solver, respectively. Some numerical examples are given in order to demonstrate the performance of the proposed algorithms and their competitiveness with existing algorithms. All of the experiments are performed on a computer workstation with the aid of programs written in MATLAB. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2015.03.009 |