Two symbolic algorithms for solving general periodic pentadiagonal linear systems

In this paper, we present two novel symbolic computational algorithms to solve periodic pentadiagonal (PP) linear systems. These two algorithms are based on a special matrix decomposition and the use of any fast pentadiagonal linear solver, respectively. Some numerical examples are given in order to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 69; číslo 9; s. 1020 - 1029
Hlavní autori: Jia, Jiteng, Jiang, Yaolin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2015
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present two novel symbolic computational algorithms to solve periodic pentadiagonal (PP) linear systems. These two algorithms are based on a special matrix decomposition and the use of any fast pentadiagonal linear solver, respectively. Some numerical examples are given in order to demonstrate the performance of the proposed algorithms and their competitiveness with existing algorithms. All of the experiments are performed on a computer workstation with the aid of programs written in MATLAB.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.03.009