Two symbolic algorithms for solving general periodic pentadiagonal linear systems

In this paper, we present two novel symbolic computational algorithms to solve periodic pentadiagonal (PP) linear systems. These two algorithms are based on a special matrix decomposition and the use of any fast pentadiagonal linear solver, respectively. Some numerical examples are given in order to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 69; číslo 9; s. 1020 - 1029
Hlavní autoři: Jia, Jiteng, Jiang, Yaolin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2015
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present two novel symbolic computational algorithms to solve periodic pentadiagonal (PP) linear systems. These two algorithms are based on a special matrix decomposition and the use of any fast pentadiagonal linear solver, respectively. Some numerical examples are given in order to demonstrate the performance of the proposed algorithms and their competitiveness with existing algorithms. All of the experiments are performed on a computer workstation with the aid of programs written in MATLAB.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.03.009