Distributed Differentially Private Algorithms for Matrix and Tensor Factorization
In many signal processing and machine learning applications, datasets containing private information are held at different locations, requiring the development of distributed privacy-preserving algorithms. Tensor and matrix factorizations are key components of many processing pipelines. In the distr...
Uložené v:
| Vydané v: | IEEE journal of selected topics in signal processing Ročník 12; číslo 6; s. 1449 - 1464 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1932-4553, 1941-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In many signal processing and machine learning applications, datasets containing private information are held at different locations, requiring the development of distributed privacy-preserving algorithms. Tensor and matrix factorizations are key components of many processing pipelines. In the distributed setting, differentially private algorithms suffer because they introduce noise to guarantee privacy. This paper designs new and improved distributed and differentially private algorithms for two popular matrix and tensor factorization methods: principal component analysis and orthogonal tensor decomposition. The new algorithms employ a correlated noise design scheme to alleviate the effects of noise and can achieve the same noise level as the centralized scenario. Experiments on synthetic and real data illustrate the regimes in which the correlated noise allows performance matching with the centralized setting, outperforming previous methods and demonstrating that meaningful utility is possible while guaranteeing differential privacy. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1932-4553 1941-0484 |
| DOI: | 10.1109/JSTSP.2018.2877842 |