Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming

The systematic design of exact optimal designs of experiments is typically challenging, as it results in nonconvex optimization problems. The literature on the computation of model-based exact optimal designs of experiments via mathematical programming, when the covariates are categorical variables,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 11; číslo 4; s. 854
Hlavný autor: Duarte, Belmiro P. M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.02.2023
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The systematic design of exact optimal designs of experiments is typically challenging, as it results in nonconvex optimization problems. The literature on the computation of model-based exact optimal designs of experiments via mathematical programming, when the covariates are categorical variables, is still scarce. We propose mixed-integer semidefinite programming formulations, to find exact D-, A- and I-optimal designs for linear models, and locally optimal designs for nonlinear models when the design domain is a finite set of points. The strategy requires: (i) the generation of a set of candidate treatments; (ii) the formulation of the optimal design problem as a mixed-integer semidefinite program; and (iii) its solution, employing appropriate solvers. For comparison, we use semidefinite programming-based formulations to find equivalent approximate optimal designs. We demonstrate the application of the algorithm with various models, considering both unconstrained and constrained setups. Equivalent approximate optimal designs are used for comparison.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11040854