Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming

The systematic design of exact optimal designs of experiments is typically challenging, as it results in nonconvex optimization problems. The literature on the computation of model-based exact optimal designs of experiments via mathematical programming, when the covariates are categorical variables,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 4; s. 854
Hlavní autor: Duarte, Belmiro P. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.02.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The systematic design of exact optimal designs of experiments is typically challenging, as it results in nonconvex optimization problems. The literature on the computation of model-based exact optimal designs of experiments via mathematical programming, when the covariates are categorical variables, is still scarce. We propose mixed-integer semidefinite programming formulations, to find exact D-, A- and I-optimal designs for linear models, and locally optimal designs for nonlinear models when the design domain is a finite set of points. The strategy requires: (i) the generation of a set of candidate treatments; (ii) the formulation of the optimal design problem as a mixed-integer semidefinite program; and (iii) its solution, employing appropriate solvers. For comparison, we use semidefinite programming-based formulations to find equivalent approximate optimal designs. We demonstrate the application of the algorithm with various models, considering both unconstrained and constrained setups. Equivalent approximate optimal designs are used for comparison.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11040854