An Entropy Interpretation of the Logarithmic Image Processing Model With Application to Contrast Enhancement
The logarithmic image processing (LIP) model is a mathematical theory that provides new operations for image processing. The contrast definition has been shown to be consistent with some important physical laws and characteristics of human visual system. In this paper, we establish an information-th...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 18; číslo 5; s. 1135 - 1140 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.05.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The logarithmic image processing (LIP) model is a mathematical theory that provides new operations for image processing. The contrast definition has been shown to be consistent with some important physical laws and characteristics of human visual system. In this paper, we establish an information-theoretic interpretation of the contrast definition. We show that it can be expressed as a combination of the relative entropy and Shannon's information content. Based on this new interpretation, we propose an adaptive algorithm for enhancing the contrast and sharpness of noisy images. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Correspondence-1 |
| ISSN: | 1057-7149 1941-0042 |
| DOI: | 10.1109/TIP.2009.2016796 |