An Entropy Interpretation of the Logarithmic Image Processing Model With Application to Contrast Enhancement

The logarithmic image processing (LIP) model is a mathematical theory that provides new operations for image processing. The contrast definition has been shown to be consistent with some important physical laws and characteristics of human visual system. In this paper, we establish an information-th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 18; H. 5; S. 1135 - 1140
1. Verfasser: Deng, Guang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.05.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The logarithmic image processing (LIP) model is a mathematical theory that provides new operations for image processing. The contrast definition has been shown to be consistent with some important physical laws and characteristics of human visual system. In this paper, we establish an information-theoretic interpretation of the contrast definition. We show that it can be expressed as a combination of the relative entropy and Shannon's information content. Based on this new interpretation, we propose an adaptive algorithm for enhancing the contrast and sharpness of noisy images.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Correspondence-1
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2009.2016796