An Underground Mine Ore Pass System Optimization via Fuzzy 0–1 Linear Programming with Novel Torricelli–Simpson Ranking Function

In this work, we propose a 3D dynamic optimization model that enables the design of an underground mine ore pass system with uncertainties. Ore transportation costs and ore pass development costs are quantified by triangular fuzzy numbers. Transportation costs are treated as production costs, and th...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 11; no. 13; p. 2914
Main Authors: Halilović, Dževdet, Gligorić, Miloš, Gligorić, Zoran, Pamučar, Dragan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.07.2023
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we propose a 3D dynamic optimization model that enables the design of an underground mine ore pass system with uncertainties. Ore transportation costs and ore pass development costs are quantified by triangular fuzzy numbers. Transportation costs are treated as production costs, and they vary over the duration of mining operation, while development costs of ore passes are treated as an investment, and they are treated as constant. The developed model belongs to the class of fuzzy 0–1 linear programming models, where the fuzzy objective cost function achieves a minimum value, with respect to given set of techno-dynamic constraints. Searching for optimal value in the fuzzy environment is a hard task, and because of that, we developed a new ranking function which transforms the fuzzy optimization model into a crisp one. A triangular fuzzy number can be presented as a triangular graph G(V,E) composed of vertices and edges. The x-coordinate of the Torricelli point of a triangular graph presents the crisp value of a triangular fuzzy number. The use of this model lets us know the optimal number of ore passes, optimal location of ore passes, and optimal dynamic ore transportation plan.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11132914