A dynamic locality multi-objective salp swarm algorithm for feature selection

•A novel multi-objective SSA algorithm is proposed.•Two essential components; dynamic time-varying strategy and the local fittest solutions are integrated with SSA.•The proposed approach (MODSSA-lbest) is tested on 13 benchmark datasets.•The MODSSA-lbest achieved significant promising results versus...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering Vol. 147; p. 106628
Main Authors: Aljarah, Ibrahim, Habib, Maria, Faris, Hossam, Al-Madi, Nailah, Heidari, Ali Asghar, Mafarja, Majdi, Elaziz, Mohamed Abd, Mirjalili, Seyedali
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2020
Subjects:
ISSN:0360-8352, 1879-0550
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel multi-objective SSA algorithm is proposed.•Two essential components; dynamic time-varying strategy and the local fittest solutions are integrated with SSA.•The proposed approach (MODSSA-lbest) is tested on 13 benchmark datasets.•The MODSSA-lbest achieved significant promising results versus its counterpart algorithms. Developing intelligent analytical tools requires pre-processing data and finding relevant features that best reinforce the performance of the predictive algorithms. Feature selection plays a significant role in maximizing the accuracy of machine learning algorithms since the presence of redundant and irrelevant attributes deteriorates the performance of the learning process and increases its complexity. Feature selection is a combinatorial optimization problem that can be formulated as a multi-objective optimization problem with the purpose of maximizing the classification performance and minimizing the number of irrelevant features. It is considered an NP hard optimization problem since having a number of (n) features produces a large search space of size (2n) of different permutations of features. An eminent type of optimizer for tackling such an exhausting search process is evolutionary, which mimic evolutionary processes in nature to solve problems in computers. Salp Swarm Algorithm (SSA) is a well-established metaheuristic that was inspired by the foraging behavior of salps in deep oceans and has proved to be beneficial in estimating global optima for optimization problems. The objective of this article is to promote and boost the performance of the multi-objective SSA for feature selection. Therefore, it proposes an enhanced multi-objective SSA algorithm (MODSSA-lbest) that adopts two essential components: the dynamic time-varying strategy and local fittest solutions. These components assist the SSA algorithm in balancing exploration and exploitation. Thus, it converges faster while avoiding locally optimal solutions. The proposed approach (MODSSA-lbest) is tested on 13 benchmark datasets and compared with the well-regarded Multi-Objective Evolutionary Algorithms (MOEAs). The results show that the MODSSA-lbest achieves significantly promising results versus its counterpart algorithms.
AbstractList •A novel multi-objective SSA algorithm is proposed.•Two essential components; dynamic time-varying strategy and the local fittest solutions are integrated with SSA.•The proposed approach (MODSSA-lbest) is tested on 13 benchmark datasets.•The MODSSA-lbest achieved significant promising results versus its counterpart algorithms. Developing intelligent analytical tools requires pre-processing data and finding relevant features that best reinforce the performance of the predictive algorithms. Feature selection plays a significant role in maximizing the accuracy of machine learning algorithms since the presence of redundant and irrelevant attributes deteriorates the performance of the learning process and increases its complexity. Feature selection is a combinatorial optimization problem that can be formulated as a multi-objective optimization problem with the purpose of maximizing the classification performance and minimizing the number of irrelevant features. It is considered an NP hard optimization problem since having a number of (n) features produces a large search space of size (2n) of different permutations of features. An eminent type of optimizer for tackling such an exhausting search process is evolutionary, which mimic evolutionary processes in nature to solve problems in computers. Salp Swarm Algorithm (SSA) is a well-established metaheuristic that was inspired by the foraging behavior of salps in deep oceans and has proved to be beneficial in estimating global optima for optimization problems. The objective of this article is to promote and boost the performance of the multi-objective SSA for feature selection. Therefore, it proposes an enhanced multi-objective SSA algorithm (MODSSA-lbest) that adopts two essential components: the dynamic time-varying strategy and local fittest solutions. These components assist the SSA algorithm in balancing exploration and exploitation. Thus, it converges faster while avoiding locally optimal solutions. The proposed approach (MODSSA-lbest) is tested on 13 benchmark datasets and compared with the well-regarded Multi-Objective Evolutionary Algorithms (MOEAs). The results show that the MODSSA-lbest achieves significantly promising results versus its counterpart algorithms.
ArticleNumber 106628
Author Heidari, Ali Asghar
Mafarja, Majdi
Aljarah, Ibrahim
Habib, Maria
Al-Madi, Nailah
Faris, Hossam
Elaziz, Mohamed Abd
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Ibrahim
  orcidid: 0000-0002-9265-9819
  surname: Aljarah
  fullname: Aljarah, Ibrahim
  email: i.aljarah@ju.edu.jo
  organization: King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
– sequence: 2
  givenname: Maria
  surname: Habib
  fullname: Habib, Maria
  organization: King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
– sequence: 3
  givenname: Hossam
  orcidid: 0000-0003-4261-8127
  surname: Faris
  fullname: Faris, Hossam
  email: hossam.faris@ju.edu.jo
  organization: King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
– sequence: 4
  givenname: Nailah
  surname: Al-Madi
  fullname: Al-Madi, Nailah
  email: n.madi@psut.edu.jo
  organization: Department of Computer Science, Princess Sumaya University for Technology, Amman, Jordan
– sequence: 5
  givenname: Ali Asghar
  surname: Heidari
  fullname: Heidari, Ali Asghar
  email: as_heidari@ut.ac.ir, aliasghar68@gmail.com, aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu
  organization: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 6
  givenname: Majdi
  surname: Mafarja
  fullname: Mafarja, Majdi
  email: mmafarja@birzeit.edu
  organization: Department of Computer Science, Birzeit University, Birzeit, Palestine
– sequence: 7
  givenname: Mohamed Abd
  orcidid: 0000-0002-7682-6269
  surname: Elaziz
  fullname: Elaziz, Mohamed Abd
  email: meahmed@zu.edu.eg
  organization: Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
– sequence: 8
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: ali.mirjalili@gmail.com
  organization: Centre for Artificial Intelligence Research and Optimisation Torrens University Australia, Fortitude Valley, Brisbane, 4006 QLD, Australia
BookMark eNp9kEFOwzAQRS1UJNrCAdj5Ail24jiOWFUVUKQiNrC2HGcMjpy4st2i3p5EZcWiq9FI_43mvwWaDX4AhO4pWVFC-UO30hZWOcmnnfNcXKE5FVWdkbIkMzQnBSeZKMr8Bi1i7AghrKzpHL2tcXsaVG81dl4rZ9MJ9weXbOabDnSyR8BRuT2OPyr0WLkvH2z67rHxARtQ6RDGALgp6odbdG2Ui3D3N5fo8_npY7PNdu8vr5v1LtOM8JTlFVO8LVgOWkCjW-CGcVEyoCw3HCglLSsZ13VdNSVrGmZELShtCAhiGlUXS0TPd3XwMQYwch9sr8JJUiInH7KTow85-ZBnHyNT_WO0TWr6OgVl3UXy8UzCWOloIcg4RgYNrQ1jb9l6e4H-BVs0fRo
CitedBy_id crossref_primary_10_1007_s40435_025_01611_y
crossref_primary_10_1177_09544062231196068
crossref_primary_10_3390_math10030464
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_3390_math10193566
crossref_primary_10_1109_TSMC_2024_3450278
crossref_primary_10_3390_biomimetics8050441
crossref_primary_10_1016_j_eswa_2021_115620
crossref_primary_10_1016_j_knosys_2020_106553
crossref_primary_10_3390_e23091189
crossref_primary_10_3390_math10193606
crossref_primary_10_1016_j_matcom_2021_04_006
crossref_primary_10_1007_s00521_024_09565_6
crossref_primary_10_1002_int_22744
crossref_primary_10_1016_j_knosys_2021_107638
crossref_primary_10_1007_s42979_025_04092_0
crossref_primary_10_1007_s11356_021_16301_3
crossref_primary_10_1002_cpe_6165
crossref_primary_10_1016_j_indcrop_2022_116094
crossref_primary_10_1002_dac_5722
crossref_primary_10_3390_en15103579
crossref_primary_10_1007_s00521_021_06751_8
crossref_primary_10_1016_j_eswa_2021_115655
crossref_primary_10_1016_j_compbiomed_2021_104941
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1080_10407790_2024_2338919
crossref_primary_10_1016_j_enconman_2023_116669
crossref_primary_10_1007_s12065_023_00892_6
crossref_primary_10_1007_s00500_024_09876_9
crossref_primary_10_1007_s42235_022_00262_5
crossref_primary_10_1016_j_ins_2023_01_069
crossref_primary_10_1038_s41598_025_97133_w
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1016_j_knosys_2022_108511
crossref_primary_10_1016_j_psep_2023_06_059
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1002_jnm_2948
crossref_primary_10_1016_j_infrared_2023_105053
crossref_primary_10_1007_s42235_022_00304_y
crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_3390_math10142396
crossref_primary_10_1007_s00521_022_07755_8
crossref_primary_10_1016_j_cie_2022_108617
crossref_primary_10_1007_s00521_021_06807_9
crossref_primary_10_1007_s42235_021_00114_8
crossref_primary_10_1007_s00366_021_01342_6
crossref_primary_10_3389_fdata_2025_1624507
crossref_primary_10_1093_comnet_cnaf024
crossref_primary_10_1016_j_advengsoft_2021_102973
crossref_primary_10_1016_j_knosys_2024_111412
crossref_primary_10_32604_cmes_2024_048049
crossref_primary_10_1016_j_apm_2021_01_017
crossref_primary_10_1109_ACCESS_2022_3189476
crossref_primary_10_1016_j_jksuci_2021_01_015
crossref_primary_10_1155_2022_1825341
crossref_primary_10_3390_s22041396
crossref_primary_10_1016_j_chemolab_2023_104880
crossref_primary_10_1007_s40747_024_01420_4
crossref_primary_10_1007_s00366_021_01479_4
crossref_primary_10_1016_j_cie_2021_107678
crossref_primary_10_3390_math11153396
crossref_primary_10_1016_j_knosys_2020_106642
crossref_primary_10_1016_j_knosys_2021_107034
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1109_ACCESS_2022_3210135
crossref_primary_10_1016_j_compbiomed_2021_105015
crossref_primary_10_1109_JAS_2023_123648
crossref_primary_10_1007_s00521_024_10155_9
crossref_primary_10_1016_j_cie_2021_107481
crossref_primary_10_1109_ACCESS_2021_3102095
Cites_doi 10.1155/2018/9751783
10.1016/j.compbiomed.2011.02.004
10.1016/j.sigpro.2012.10.022
10.1186/1687-5281-2013-47
10.1016/j.asoc.2017.06.029
10.1016/j.advengsoft.2017.07.002
10.3233/IDA-1997-1302
10.1109/72.572104
10.1016/j.compeleceng.2013.11.024
10.1109/CSIEC.2016.7482135
10.1093/biomet/52.1-2.203
10.1016/j.advengsoft.2013.12.007
10.1016/j.neucom.2012.12.057
10.1016/j.future.2020.03.055
10.1023/A:1022643204877
10.1016/j.asoc.2018.07.040
10.1007/s12559-017-9542-9
10.1016/j.ins.2017.09.028
10.1109/LGRS.2016.2645710
10.1016/j.asoc.2016.10.032
10.1145/1656274.1656278
10.1007/s10489-016-0767-1
10.1016/j.ins.2015.02.031
10.1109/MHS.1995.494215
10.1016/j.eswa.2018.07.013
10.1016/j.procs.2015.09.006
10.1016/j.eswa.2018.04.028
10.1007/s12652-018-1031-9
10.1016/j.future.2019.02.028
10.1016/j.neucom.2018.04.020
10.1109/INTELCIS.2017.8260072
10.1142/S1469026814500096
10.1109/TCBB.2015.2476796
10.1080/08839514.2018.1444334
10.1109/CEC.2000.870311
10.1016/j.knosys.2017.12.037
10.1016/j.swevo.2012.09.002
10.1007/s10489-016-0825-8
10.1016/j.patrec.2015.07.007
10.1007/s11047-007-9050-z
10.1016/j.knosys.2018.05.009
10.1109/CEC.2018.8477975
10.1109/4235.585893
10.1117/1.JATIS.4.3.038001
10.1016/j.eswa.2016.10.015
10.1109/CEC.2002.1004388
10.4018/978-1-4666-5888-2.ch346
10.1016/j.knosys.2018.08.003
10.1109/TEVC.2002.804320
10.1145/347090.347169
10.1109/CEC.2008.4631192
10.1016/j.knosys.2016.10.030
10.1007/3-540-36127-8_27
10.1007/978-1-4615-5725-8_8
10.1016/j.patcog.2009.06.009
10.1007/s00500-016-2063-8
10.1016/j.asoc.2012.11.042
10.1109/TGRS.2017.2748701
10.1186/s13673-019-0174-9
10.1016/j.eswa.2008.07.026
10.1109/TEVC.2007.892759
10.1109/TSMCB.2006.883267
10.1007/s00521-017-2988-6
10.1016/j.eswa.2008.10.013
10.1109/TSMCB.2012.2227469
10.1109/TEVC.2015.2504420
10.1109/CIDM.2009.4938673
10.1007/978-3-319-13563-2_44
10.1016/j.amc.2009.03.090
10.1016/j.advengsoft.2015.01.010
10.1016/S1665-6423(15)30013-4
10.1007/3-540-45356-3_83
10.3390/en11061561
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2017.06.039
10.1109/MCI.2019.2919398
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106628
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106628
S0360835220303624
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c406t-274a6d342ec8ebcde6f46854e142f6e110d4546c997b54bb4f89811b0e80fba93
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566574300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:25:01 EST 2025
Tue Nov 18 22:41:15 EST 2025
Fri Feb 23 02:50:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wrapper feature selection
Salp swarm algorithm
Multi-objective
Optimization
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-274a6d342ec8ebcde6f46854e142f6e110d4546c997b54bb4f89811b0e80fba93
ORCID 0000-0003-4261-8127
0000-0002-7682-6269
0000-0002-9265-9819
0000-0002-1443-9458
OpenAccessLink http://hdl.handle.net/10072/400412
ParticipantIDs crossref_primary_10_1016_j_cie_2020_106628
crossref_citationtrail_10_1016_j_cie_2020_106628
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106628
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rizk-Allah, Hassanien, Elhoseny, Gunasekaran (b0300) 2019
Reddy, M. J., & Kumar, D. N. (2015). Elitist-mutated multi-objective particle swarm optimization for engineering design. In
Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. In
Han, Kim (b0160) 2002; 6
Ma, Li, Gao, Chen, Ma, Qu (b0235) 2017; 14
Alresheedi, Lu, Elaziz, Ewees (b0015) 2019; 9
(pp. 280–290). Springer.
3rd ed. (pp. 3534–3545). IGI Global.
Auer, P., Chiang, C.-K., Ortner, R., & Drugan, M. (2016). Pareto front identification from stochastic bandit feedback. In
Xue, Zhang, Browne, Yao (b0405) 2015; 20
Ferranti, Marcelloni, Segatori, Antonelli, Ducange (b0125) 2017; 415
Ibrahim, Elaziz, Lu (b0175) 2018; 108
Kim, Y, Street, W. N., & Menczer, F. (2000). Feature selection in unsupervised learning via evolutionary search. In
Bermejo, P., Gámez, J. A., & Puerta, J. M. (2009). Incremental wrapper-based subset selection with replacement: An advantageous alternative to sequential forward selection. In
Emary, Yamany, Hassanien, Snasel (b0105) 2015; 65
Schiezaro, Pedrini (b0320) 2013; 2013
Pappa, G. L., Freitas, A. A., & Kaestner, C. A. (2002). Attribute selection with a multi-objective genetic algorithm. In
De Souza, R. C. T., dos Santos Coelho, L., De Macedo, C. A., & Pierezan, J. (2018). A v-shaped binary crow search algorithm for feature selection. In
Mafarja, Mirjalili (b0230) 2018
Xue, Cervante, Shang, Browne, Zhang (b0385) 2014; 13
IEEE (pp. 1–8).
Mirjalili, Lewis (b0265) 2016; 95
Aljarah, Ala’M, Faris, Hassonah, Mirjalili, Saadeh (bib468) 2018; 10
Ibrahim, Ewees, Oliva, Elaziz, Lu (b0180) 2018
Hancer, Xue, Zhang, Karaboga, Akay (b0155) 2018; 422
Mirjalili, Lewis (b0260) 2013; 9
(pp. 849–858). Springer.
Mirjalili, Mirjalili, Lewis (b0270) 2014; 69
Sayed, Khoriba, Haggag (b0315) 2018
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Wang, Wang, Cui, Sun, Zhao, Wang, Xue (b0370) 2018; 69
Mirjalili, Jangir, Saremi (b0255) 2017; 46
(Vol. 1, pp. 309–316). IEEE.
52, 203–224.
Mohemmed, A. W., & Zhang, M. (2008). Evaluation of particle swarm optimization based centroid classifier with different distance metrics. In
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib464) 2019; 97
Ghosh, Datta, Ghosh (b0140) 2013; 13
(pp. 516–528). Springer.
Chuang, Yang, Wu, Yang (b0065) 2011; 41
Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (b0225) 2018; 145
Tian, Cheng, Zhang, Li, Jin (b0350) 2019; 14
Emmanouilidis, C., Hunter, A., & MacIntyre, J., (2000). A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. In
Spolaôr, Lorena, Diana Lee (b0335) 2017; 31
Wang, Huang (b0360) 2009; 36
Zhang, Gong, Sun, Guo (b0435) 2017; 7
Zhu, Liang, Chen, Ming (b0450) 2017; 116
Ibrahim, Elaziz, Ewees, Selim, Lu (b0170) 2018; 4
Wang, Gao, Chen (b0355) 2018; 11
Lichman, M. (2013). UCI machine learning repository.
(pp. 39–43). IEEE.
Ma, Zhong, He, Zhang (b0240) 2018; 56
Behravan, I., Dehghantanha, O., & Zahiri, S. H. (2016). An optimal svm with feature selection using multi-objective pso. In
(pp. 117–136). Springer.
Coello, C. C., & Lechuga, M. S. (2002). Mopso: A proposal for multiple objective particle swarm optimization. In
Dickson, Wang, Dong, Wen (b0095) 2015
Soliman, Abou-El-Enien, Emary, Khorshid (b0330) 2018; 11
(pp. 315–320). IEEE.
(Vol. 2, pp. 1051–1056). IEEE.
Langley (b0210) 1994; Vol. 184
Karaboga, Akay (b0190) 2009; 214
Yu, Lu, Yu (b0425) 2018; 2018
Quinlan (b0290) 1986; 1
Chen, Chen, Chen (b0060) 2013; 93
Khan, Baig (b0195) 2015; 13
Aljarah, Mafarja, Heidari, Faris, Zhang, Mirjalili (b0010) 2018; 71
Antonio, Coello (b0025) 2017
Ibrahim, Ewees, Oliva, Elaziz, Lu (b0185) 2019; 10
Mirjalili (b0245) 2015; 83
Yu, L. & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In
Guyon, Elisseeff (b0145) 2003; 3
Zhu, Ong, Dash (b0455) 2007; 37
Sarkar, Das, Chaudhuri (b0305) 2017; 50
Setiono, Liu (b0325) 1997; 8
Gheyas, Smith (b0135) 2010; 43
Zhang, Gong, Cheng (b0430) 2015; 14
Chandrashekar, Sahin (b0055) 2014; 40
Coello, Lamont, Van Veldhuizen (b0075) 2007; Vol. 5
(pp. 2929–2932). IEEE.
Hussien, A. G., Hassanien, A. E., & Houssein, E. H. (2017). Swarming behaviour of salps algorithm for predicting chemical compound activities. In
Tan, Teoh, Yu, Goh (b0345) 2009; 36
Xue, Zhang, Browne (b0395) 2012; 43
Li, Chen, Wang, Heidari, Mirjalili (bib465) 2020; 111
Zhang, Li (b0440) 2007; 11
Wang, Li, Li (b0365) 2015; 307
Yao, Ding, Jin, Hao (b0415) 2017; 21
Dash, Liu (b0080) 1997; 1
Gehan, E. A. (1965). A generalized wilcoxon test for comparing arbitrarily singly-censored samples.
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0250) 2017
Wolpert, Macready (b0380) 1997; 1
(pp. 939–947).
Bandaru, Ng, Deb (b0035) 2017; 70
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b0150) 2009; 11
Amoozegar, Minaei-Bidgoli (b0020) 2018; 113
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In
(pp. 856–863).
Witten, Frank, Hall, Pal (b0375) 2016
(pp. 365–369).
Sayed, Hassanien, Azar (b0310) 2019; 31
Faris, Aljarah, Mirjalili (b0115) 2016; 45
Tan, Lim, Cheah (b0340) 2014; 125
Xue, B., Fu, W., & Zhang, M. (2014). Multi-objective feature selection in classification: a differential evolution approach. In
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0220) 2018; 161
(pp. 76–81). IEEE.
Paul, Das (b0285) 2015; 65
Banks, Vincent, Anyakoha (b0040) 2008; 7
(pp. 367–374). IEEE.
Faris, Mafarja, Heidari, Aljarah, Ala’M, Mirjalili, Fujita (b0120) 2018; 154
Xue, Zhang, Browne (b0400) 2013; 43
Kiziloz, Deniz, Dokeroglu, Cosar (b0205) 2018; 306
Yao (10.1016/j.cie.2020.106628_b0415) 2017; 21
Dash (10.1016/j.cie.2020.106628_b0080) 1997; 1
Soliman (10.1016/j.cie.2020.106628_b0330) 2018; 11
Alresheedi (10.1016/j.cie.2020.106628_b0015) 2019; 9
Tian (10.1016/j.cie.2020.106628_b0350) 2019; 14
Li (10.1016/j.cie.2020.106628_bib465) 2020; 111
Mirjalili (10.1016/j.cie.2020.106628_b0250) 2017
Zhang (10.1016/j.cie.2020.106628_b0430) 2015; 14
Ibrahim (10.1016/j.cie.2020.106628_b0185) 2019; 10
Heidari (10.1016/j.cie.2020.106628_bib464) 2019; 97
Ibrahim (10.1016/j.cie.2020.106628_b0180) 2018
10.1016/j.cie.2020.106628_b0110
Hancer (10.1016/j.cie.2020.106628_b0155) 2018; 422
Mirjalili (10.1016/j.cie.2020.106628_b0265) 2016; 95
10.1016/j.cie.2020.106628_b0275
Schiezaro (10.1016/j.cie.2020.106628_b0320) 2013; 2013
10.1016/j.cie.2020.106628_b0030
Ferranti (10.1016/j.cie.2020.106628_b0125) 2017; 415
Aljarah (10.1016/j.cie.2020.106628_b0010) 2018; 71
Tan (10.1016/j.cie.2020.106628_b0345) 2009; 36
Antonio (10.1016/j.cie.2020.106628_b0025) 2017
Zhu (10.1016/j.cie.2020.106628_b0455) 2007; 37
Gheyas (10.1016/j.cie.2020.106628_b0135) 2010; 43
10.1016/j.cie.2020.106628_b0390
10.1016/j.cie.2020.106628_b0070
Khan (10.1016/j.cie.2020.106628_b0195) 2015; 13
Dickson (10.1016/j.cie.2020.106628_b0095) 2015
Setiono (10.1016/j.cie.2020.106628_b0325) 1997; 8
Zhu (10.1016/j.cie.2020.106628_b0450) 2017; 116
Faris (10.1016/j.cie.2020.106628_b0115) 2016; 45
Wang (10.1016/j.cie.2020.106628_b0370) 2018; 69
Chandrashekar (10.1016/j.cie.2020.106628_b0055) 2014; 40
Chuang (10.1016/j.cie.2020.106628_b0065) 2011; 41
Spolaôr (10.1016/j.cie.2020.106628_b0335) 2017; 31
Langley (10.1016/j.cie.2020.106628_b0210) 1994; Vol. 184
10.1016/j.cie.2020.106628_b0165
Sayed (10.1016/j.cie.2020.106628_b0310) 2019; 31
Xue (10.1016/j.cie.2020.106628_b0405) 2015; 20
Mirjalili (10.1016/j.cie.2020.106628_b0270) 2014; 69
Banks (10.1016/j.cie.2020.106628_b0040) 2008; 7
10.1016/j.cie.2020.106628_b0085
Mafarja (10.1016/j.cie.2020.106628_b0220) 2018; 161
10.1016/j.cie.2020.106628_b0200
10.1016/j.cie.2020.106628_b0045
Aljarah (10.1016/j.cie.2020.106628_bib468) 2018; 10
Karaboga (10.1016/j.cie.2020.106628_b0190) 2009; 214
Mirjalili (10.1016/j.cie.2020.106628_b0260) 2013; 9
10.1016/j.cie.2020.106628_b0280
Hall (10.1016/j.cie.2020.106628_b0150) 2009; 11
Coello (10.1016/j.cie.2020.106628_b0075) 2007; Vol. 5
Ma (10.1016/j.cie.2020.106628_b0235) 2017; 14
Mirjalili (10.1016/j.cie.2020.106628_b0255) 2017; 46
Ibrahim (10.1016/j.cie.2020.106628_b0175) 2018; 108
Ibrahim (10.1016/j.cie.2020.106628_b0170) 2018; 4
10.1016/j.cie.2020.106628_b0215
Mafarja (10.1016/j.cie.2020.106628_b0230) 2018
Sarkar (10.1016/j.cie.2020.106628_b0305) 2017; 50
Witten (10.1016/j.cie.2020.106628_b0375) 2016
Mafarja (10.1016/j.cie.2020.106628_b0225) 2018; 145
Faris (10.1016/j.cie.2020.106628_b0120) 2018; 154
10.1016/j.cie.2020.106628_b0130
10.1016/j.cie.2020.106628_b0295
Ghosh (10.1016/j.cie.2020.106628_b0140) 2013; 13
10.1016/j.cie.2020.106628_b0410
Xue (10.1016/j.cie.2020.106628_b0395) 2012; 43
Emary (10.1016/j.cie.2020.106628_b0105) 2015; 65
Bandaru (10.1016/j.cie.2020.106628_b0035) 2017; 70
10.1016/j.cie.2020.106628_b0090
Wang (10.1016/j.cie.2020.106628_b0365) 2015; 307
Zhang (10.1016/j.cie.2020.106628_b0435) 2017; 7
Han (10.1016/j.cie.2020.106628_b0160) 2002; 6
10.1016/j.cie.2020.106628_b0050
Sayed (10.1016/j.cie.2020.106628_b0315) 2018
Wang (10.1016/j.cie.2020.106628_b0355) 2018; 11
Tan (10.1016/j.cie.2020.106628_b0340) 2014; 125
Yu (10.1016/j.cie.2020.106628_b0425) 2018; 2018
Rizk-Allah (10.1016/j.cie.2020.106628_b0300) 2019
Xue (10.1016/j.cie.2020.106628_b0400) 2013; 43
Chen (10.1016/j.cie.2020.106628_b0060) 2013; 93
Wolpert (10.1016/j.cie.2020.106628_b0380) 1997; 1
Quinlan (10.1016/j.cie.2020.106628_b0290) 1986; 1
Wang (10.1016/j.cie.2020.106628_b0360) 2009; 36
Mirjalili (10.1016/j.cie.2020.106628_b0245) 2015; 83
Guyon (10.1016/j.cie.2020.106628_b0145) 2003; 3
Amoozegar (10.1016/j.cie.2020.106628_b0020) 2018; 113
Zhang (10.1016/j.cie.2020.106628_b0440) 2007; 11
Ma (10.1016/j.cie.2020.106628_b0240) 2018; 56
Xue (10.1016/j.cie.2020.106628_b0385) 2014; 13
10.1016/j.cie.2020.106628_b0420
10.1016/j.cie.2020.106628_b0100
Kiziloz (10.1016/j.cie.2020.106628_b0205) 2018; 306
Paul (10.1016/j.cie.2020.106628_b0285) 2015; 65
References_xml – volume: 10
  start-page: 3155
  year: 2019
  end-page: 3169
  ident: b0185
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0270
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– reference: Behravan, I., Dehghantanha, O., & Zahiri, S. H. (2016). An optimal svm with feature selection using multi-objective pso. In
– reference: (Vol. 1, pp. 309–316). IEEE.
– reference: Xue, B., Fu, W., & Zhang, M. (2014). Multi-objective feature selection in classification: a differential evolution approach. In
– reference: Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In
– reference: Hussien, A. G., Hassanien, A. E., & Houssein, E. H. (2017). Swarming behaviour of salps algorithm for predicting chemical compound activities. In
– volume: 116
  start-page: 74
  year: 2017
  end-page: 85
  ident: b0450
  article-title: An improved nsga-iii algorithm for feature selection used in intrusion detection
  publication-title: Knowledge-Based Systems
– volume: 10
  start-page: 478
  year: 2018
  end-page: 495
  ident: bib468
  article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm
  publication-title: Cognitive Computation
– reference: 52, 203–224.
– volume: 65
  start-page: 51
  year: 2015
  end-page: 59
  ident: b0285
  article-title: Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach
  publication-title: Pattern Recognition Letters
– reference: Auer, P., Chiang, C.-K., Ortner, R., & Drugan, M. (2016). Pareto front identification from stochastic bandit feedback. In
– reference: Emmanouilidis, C., Hunter, A., & MacIntyre, J., (2000). A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. In
– volume: 9
  start-page: 15
  year: 2019
  ident: b0015
  article-title: Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing
  publication-title: Human-centric Computing and Information Sciences
– volume: 31
  start-page: 764
  year: 2017
  end-page: 791
  ident: b0335
  article-title: Feature selection via pareto multi-objective genetic algorithms
  publication-title: Applied Artificial Intelligence
– reference: (pp. 2929–2932). IEEE.
– reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b0055
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
– volume: 70
  start-page: 139
  year: 2017
  end-page: 159
  ident: b0035
  article-title: Data mining methods for knowledge discovery in multi-objective optimization: Part a-survey
  publication-title: Expert Systems with Applications
– volume: 108
  start-page: 1
  year: 2018
  end-page: 27
  ident: b0175
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2018
  end-page: 17
  ident: b0230
  article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection
  publication-title: Soft Computing
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: b0400
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
– volume: 113
  start-page: 499
  year: 2018
  end-page: 514
  ident: b0020
  article-title: Optimizing multi-objective pso based feature selection method using a feature elitism mechanism
  publication-title: Expert Systems with Applications
– reference: De Souza, R. C. T., dos Santos Coelho, L., De Macedo, C. A., & Pierezan, J. (2018). A v-shaped binary crow search algorithm for feature selection. In
– reference: , 3rd ed. (pp. 3534–3545). IGI Global.
– reference: Mohemmed, A. W., & Zhang, M. (2008). Evaluation of particle swarm optimization based centroid classifier with different distance metrics. In
– reference: (pp. 367–374). IEEE.
– reference: Coello, C. C., & Lechuga, M. S. (2002). Mopso: A proposal for multiple objective particle swarm optimization. In
– volume: 20
  start-page: 606
  year: 2015
  end-page: 626
  ident: b0405
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Gehan, E. A. (1965). A generalized wilcoxon test for comparing arbitrarily singly-censored samples.
– reference: Pappa, G. L., Freitas, A. A., & Kaestner, C. A. (2002). Attribute selection with a multi-objective genetic algorithm. In:
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b0220
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
– reference: . IEEE (pp. 1–8).
– volume: 50
  start-page: 142
  year: 2017
  end-page: 157
  ident: b0305
  article-title: Multi-level thresholding with a decomposition-based multi-objective evolutionary algorithm for segmenting natural and medical images
  publication-title: Applied Soft Computing
– volume: 13
  start-page: 1450009
  year: 2014
  ident: b0385
  article-title: Binary pso and rough set theory for feature selection: A multi-objective filter based approach
  publication-title: International Journal of Computational Intelligence and Applications
– volume: 306
  start-page: 94
  year: 2018
  end-page: 107
  ident: b0205
  article-title: Novel multiobjective tlbo algorithms for the feature subset selection problem
  publication-title: Neurocomputing
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0435
  article-title: A pso-based multi-objective multi-label feature selection method in classification
  publication-title: Scientific Reports
– reference: (pp. 516–528). Springer.
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b0255
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Applied Intelligence
– volume: 2013
  start-page: 47
  year: 2013
  ident: b0320
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP Journal on Image and Video Processing
– reference: (pp. 365–369).
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0440
  article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 315–320). IEEE.
– volume: 4
  start-page: 038001
  year: 2018
  ident: b0170
  article-title: Galaxy images classification using hybrid brain storm optimization with moth flame optimization
  publication-title: Journal of Astronomical Telescopes, Instruments, and Systems
– volume: 21
  start-page: 4309
  year: 2017
  end-page: 4322
  ident: b0415
  article-title: Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system
  publication-title: Soft Computing
– reference: (pp. 117–136). Springer.
– year: 2017
  ident: b0025
  article-title: Coevolutionary multi-objective evolutionary algorithms: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 13
  start-page: 1969
  year: 2013
  end-page: 1977
  ident: b0140
  article-title: Self-adaptive differential evolution for feature selection in hyperspectral image data
  publication-title: Applied Soft Computing
– reference: (pp. 856–863).
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: b0310
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Computing and Applications
– volume: 65
  start-page: 623
  year: 2015
  end-page: 632
  ident: b0105
  article-title: Multi-objective gray-wolf optimization for attribute reduction
  publication-title: Procedia Computer Science
– volume: 307
  start-page: 73
  year: 2015
  end-page: 88
  ident: b0365
  article-title: A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
  publication-title: Information Sciences
– reference: Lichman, M. (2013). UCI machine learning repository.
– volume: 14
  start-page: 409
  year: 2017
  end-page: 413
  ident: b0235
  article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b0150
  article-title: The weka data mining software: an update
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 41
  start-page: 228
  year: 2011
  end-page: 237
  ident: b0065
  article-title: A hybrid feature selection method for dna microarray data
  publication-title: Computers in Biology and Medicine
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0380
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: b0190
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib464
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– reference: (pp. 76–81). IEEE.
– reference: Reddy, M. J., & Kumar, D. N. (2015). Elitist-mutated multi-objective particle swarm optimization for engineering design. In
– volume: 8
  start-page: 654
  year: 1997
  end-page: 662
  ident: b0325
  article-title: Neural-network feature selector
  publication-title: IEEE Transactions on Neural Networks
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0265
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– reference: Yu, L. & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In
– volume: Vol. 5
  year: 2007
  ident: b0075
  publication-title: Evolutionary algorithms for solving multi-objective problems
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: bib465
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Generation Computer Systems
– volume: 43
  start-page: 1656
  year: 2012
  end-page: 1671
  ident: b0395
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
– start-page: 549
  year: 2015
  end-page: 558
  ident: b0095
  article-title: A feature selection method based on multi-objective optimisation with gravitational search algorithm
  publication-title: Geo-Informatics in Resource Management and Sustainable Ecosystem
– volume: 125
  start-page: 217
  year: 2014
  end-page: 228
  ident: b0340
  article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
  publication-title: Neurocomputing
– reference: (Vol. 2, pp. 1051–1056). IEEE.
– year: 2016
  ident: b0375
  article-title: Data Mining: Practical machine learning tools and techniques
– volume: 36
  start-page: 5900
  year: 2009
  end-page: 5908
  ident: b0360
  article-title: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data
  publication-title: Expert Systems with Applications
– reference: (pp. 849–858). Springer.
– volume: 422
  start-page: 462
  year: 2018
  end-page: 479
  ident: b0155
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Information Sciences
– volume: 56
  start-page: 422
  year: 2018
  end-page: 435
  ident: b0240
  article-title: Multiobjective subpixel land-cover mapping
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 1
  year: 2018
  end-page: 20
  ident: b0315
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Applied Intelligence
– reference: (pp. 39–43). IEEE.
– volume: 11
  start-page: 1561
  year: 2018
  ident: b0355
  article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting
  publication-title: Energies
– reference: Bermejo, P., Gámez, J. A., & Puerta, J. M. (2009). Incremental wrapper-based subset selection with replacement: An advantageous alternative to sequential forward selection. In
– volume: 43
  start-page: 5
  year: 2010
  end-page: 13
  ident: b0135
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recognition
– reference: (pp. 939–947).
– volume: 37
  start-page: 70
  year: 2007
  end-page: 76
  ident: b0455
  article-title: Wrapper–filter feature selection algorithm using a memetic framework
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 6
  start-page: 580
  year: 2002
  end-page: 593
  ident: b0160
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 415
  start-page: 319
  year: 2017
  end-page: 340
  ident: b0125
  article-title: A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data
  publication-title: Information Sciences
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b0290
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b0120
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 14
  start-page: 61
  year: 2019
  end-page: 74
  ident: b0350
  article-title: Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 7
  start-page: 109
  year: 2008
  end-page: 124
  ident: b0040
  article-title: A review of particle swarm optimization. part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications
  publication-title: Natural Computing
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b0245
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– reference: Kim, Y, Street, W. N., & Menczer, F. (2000). Feature selection in unsupervised learning via evolutionary search. In
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b0145
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– year: 2017
  ident: b0250
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– reference: Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. In
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0260
  article-title: S-shaped versus v-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 145
  start-page: 25
  year: 2018
  end-page: 45
  ident: b0225
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 71
  start-page: 964
  year: 2018
  end-page: 979
  ident: b0010
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Applied Soft Computing
– volume: 69
  start-page: 806
  year: 2018
  end-page: 815
  ident: b0370
  article-title: A hybrid multi-objective firefly algorithm for big data optimization
  publication-title: Applied Soft Computing
– volume: 2018
  year: 2018
  ident: b0425
  article-title: Evaluating multiobjective evolutionary algorithms using mcdm methods
  publication-title: Mathematical Problems in Engineering
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: b0080
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
– volume: 45
  start-page: 322
  year: 2016
  end-page: 332
  ident: b0115
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Applied Intelligence
– volume: 13
  start-page: 145
  year: 2015
  end-page: 159
  ident: b0195
  article-title: Multi-objective feature subset selection using non-dominated sorting genetic algorithm
  publication-title: Journal of Applied Research and Technology
– start-page: 1
  year: 2018
  end-page: 15
  ident: b0180
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– reference: (pp. 280–290). Springer.
– volume: 14
  start-page: 64
  year: 2015
  end-page: 75
  ident: b0430
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 36
  start-page: 8616
  year: 2009
  end-page: 8630
  ident: b0345
  article-title: A hybrid evolutionary algorithm for attribute selection in data mining
  publication-title: Expert Systems with Applications
– volume: 93
  start-page: 1566
  year: 2013
  end-page: 1576
  ident: b0060
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Processing
– volume: Vol. 184
  start-page: 245
  year: 1994
  end-page: 271
  ident: b0210
  article-title: Selection of relevant features in machine learning
  publication-title: Proceedings of the AAAI Fall symposium on relevance
– start-page: 1
  year: 2019
  end-page: 23
  ident: b0300
  article-title: A new binary salp swarm algorithm: development and application for optimization tasks
  publication-title: Neural Computing and Applications
– volume: 11
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0330
  article-title: A novel multi-objective moth-flame optimization algorithm for feature selection
  publication-title: Indian Journal of Science and Technology
– volume: 2018
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0425
  article-title: Evaluating multiobjective evolutionary algorithms using mcdm methods
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2018/9751783
– start-page: 549
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0095
  article-title: A feature selection method based on multi-objective optimisation with gravitational search algorithm
– start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0315
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Applied Intelligence
– volume: 41
  start-page: 228
  year: 2011
  ident: 10.1016/j.cie.2020.106628_b0065
  article-title: A hybrid feature selection method for dna microarray data
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2011.02.004
– volume: 93
  start-page: 1566
  year: 2013
  ident: 10.1016/j.cie.2020.106628_b0060
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2012.10.022
– ident: 10.1016/j.cie.2020.106628_b0215
– volume: 2013
  start-page: 47
  year: 2013
  ident: 10.1016/j.cie.2020.106628_b0320
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1186/1687-5281-2013-47
– volume: 69
  start-page: 806
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0370
  article-title: A hybrid multi-objective firefly algorithm for big data optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.029
– year: 2017
  ident: 10.1016/j.cie.2020.106628_b0250
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– year: 2017
  ident: 10.1016/j.cie.2020.106628_b0025
  article-title: Coevolutionary multi-objective evolutionary algorithms: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
– ident: 10.1016/j.cie.2020.106628_b0420
– volume: 1
  start-page: 131
  year: 1997
  ident: 10.1016/j.cie.2020.106628_b0080
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1997-1302
– volume: 8
  start-page: 654
  year: 1997
  ident: 10.1016/j.cie.2020.106628_b0325
  article-title: Neural-network feature selector
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.572104
– volume: 40
  start-page: 16
  year: 2014
  ident: 10.1016/j.cie.2020.106628_b0055
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: 10.1016/j.cie.2020.106628_b0045
  doi: 10.1109/CSIEC.2016.7482135
– ident: 10.1016/j.cie.2020.106628_b0130
  doi: 10.1093/biomet/52.1-2.203
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.cie.2020.106628_b0270
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 125
  start-page: 217
  year: 2014
  ident: 10.1016/j.cie.2020.106628_b0340
  article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.057
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.cie.2020.106628_bib465
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.03.055
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.cie.2020.106628_b0290
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1023/A:1022643204877
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.cie.2020.106628_b0145
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 71
  start-page: 964
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0010
  article-title: Asynchronous accelerating multi-leader salp chains for feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.040
– volume: 10
  start-page: 478
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2020.106628_bib468
  article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-017-9542-9
– volume: 422
  start-page: 462
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0155
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.09.028
– volume: 14
  start-page: 409
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0235
  article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2016.2645710
– volume: 50
  start-page: 142
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0305
  article-title: Multi-level thresholding with a decomposition-based multi-objective evolutionary algorithm for segmenting natural and medical images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.10.032
– volume: 11
  start-page: 10
  year: 2009
  ident: 10.1016/j.cie.2020.106628_b0150
  article-title: The weka data mining software: an update
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1656274.1656278
– volume: 45
  start-page: 322
  year: 2016
  ident: 10.1016/j.cie.2020.106628_b0115
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0767-1
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0330
  article-title: A novel multi-objective moth-flame optimization algorithm for feature selection
  publication-title: Indian Journal of Science and Technology
– volume: 307
  start-page: 73
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0365
  article-title: A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.02.031
– ident: 10.1016/j.cie.2020.106628_b0100
  doi: 10.1109/MHS.1995.494215
– volume: 113
  start-page: 499
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0020
  article-title: Optimizing multi-objective pso based feature selection method using a feature elitism mechanism
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.07.013
– volume: 65
  start-page: 623
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0105
  article-title: Multi-objective gray-wolf optimization for attribute reduction
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.09.006
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0175
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.04.028
– volume: 10
  start-page: 3155
  year: 2019
  ident: 10.1016/j.cie.2020.106628_b0185
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-018-1031-9
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.cie.2020.106628_bib464
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 306
  start-page: 94
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0205
  article-title: Novel multiobjective tlbo algorithms for the feature subset selection problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.020
– ident: 10.1016/j.cie.2020.106628_b0165
  doi: 10.1109/INTELCIS.2017.8260072
– volume: 13
  start-page: 1450009
  year: 2014
  ident: 10.1016/j.cie.2020.106628_b0385
  article-title: Binary pso and rough set theory for feature selection: A multi-objective filter based approach
  publication-title: International Journal of Computational Intelligence and Applications
  doi: 10.1142/S1469026814500096
– volume: 14
  start-page: 64
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0430
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2476796
– volume: 31
  start-page: 764
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0335
  article-title: Feature selection via pareto multi-objective genetic algorithms
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2018.1444334
– ident: 10.1016/j.cie.2020.106628_b0110
  doi: 10.1109/CEC.2000.870311
– volume: 145
  start-page: 25
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0225
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.12.037
– start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0230
  article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection
  publication-title: Soft Computing
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.cie.2020.106628_b0260
  article-title: S-shaped versus v-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– year: 2016
  ident: 10.1016/j.cie.2020.106628_b0375
– volume: 46
  start-page: 79
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0255
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0825-8
– volume: 65
  start-page: 51
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0285
  article-title: Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2015.07.007
– volume: 7
  start-page: 109
  year: 2008
  ident: 10.1016/j.cie.2020.106628_b0040
  article-title: A review of particle swarm optimization. part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications
  publication-title: Natural Computing
  doi: 10.1007/s11047-007-9050-z
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0120
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.05.009
– volume: Vol. 5
  year: 2007
  ident: 10.1016/j.cie.2020.106628_b0075
– ident: 10.1016/j.cie.2020.106628_b0090
  doi: 10.1109/CEC.2018.8477975
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.cie.2020.106628_b0380
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 4
  start-page: 038001
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0170
  article-title: Galaxy images classification using hybrid brain storm optimization with moth flame optimization
  publication-title: Journal of Astronomical Telescopes, Instruments, and Systems
  doi: 10.1117/1.JATIS.4.3.038001
– volume: 70
  start-page: 139
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0035
  article-title: Data mining methods for knowledge discovery in multi-objective optimization: Part a-survey
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.10.015
– ident: 10.1016/j.cie.2020.106628_b0070
  doi: 10.1109/CEC.2002.1004388
– ident: 10.1016/j.cie.2020.106628_b0030
– ident: 10.1016/j.cie.2020.106628_b0295
  doi: 10.4018/978-1-4666-5888-2.ch346
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0220
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.003
– volume: 6
  start-page: 580
  year: 2002
  ident: 10.1016/j.cie.2020.106628_b0160
  article-title: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2002.804320
– ident: 10.1016/j.cie.2020.106628_b0200
  doi: 10.1145/347090.347169
– ident: 10.1016/j.cie.2020.106628_b0275
  doi: 10.1109/CEC.2008.4631192
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0435
  article-title: A pso-based multi-objective multi-label feature selection method in classification
  publication-title: Scientific Reports
– volume: 116
  start-page: 74
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0450
  article-title: An improved nsga-iii algorithm for feature selection used in intrusion detection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.10.030
– ident: 10.1016/j.cie.2020.106628_b0280
  doi: 10.1007/3-540-36127-8_27
– ident: 10.1016/j.cie.2020.106628_b0410
  doi: 10.1007/978-1-4615-5725-8_8
– volume: 43
  start-page: 5
  year: 2010
  ident: 10.1016/j.cie.2020.106628_b0135
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.06.009
– volume: 21
  start-page: 4309
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0415
  article-title: Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2063-8
– volume: 13
  start-page: 1969
  year: 2013
  ident: 10.1016/j.cie.2020.106628_b0140
  article-title: Self-adaptive differential evolution for feature selection in hyperspectral image data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.042
– volume: 56
  start-page: 422
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0240
  article-title: Multiobjective subpixel land-cover mapping
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2017.2748701
– volume: 9
  start-page: 15
  year: 2019
  ident: 10.1016/j.cie.2020.106628_b0015
  article-title: Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing
  publication-title: Human-centric Computing and Information Sciences
  doi: 10.1186/s13673-019-0174-9
– volume: 36
  start-page: 5900
  year: 2009
  ident: 10.1016/j.cie.2020.106628_b0360
  article-title: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.026
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.cie.2020.106628_b0440
  article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 37
  start-page: 70
  year: 2007
  ident: 10.1016/j.cie.2020.106628_b0455
  article-title: Wrapper–filter feature selection algorithm using a memetic framework
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2006.883267
– volume: 31
  start-page: 171
  year: 2019
  ident: 10.1016/j.cie.2020.106628_b0310
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2988-6
– volume: 36
  start-page: 8616
  year: 2009
  ident: 10.1016/j.cie.2020.106628_b0345
  article-title: A hybrid evolutionary algorithm for attribute selection in data mining
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.10.013
– volume: Vol. 184
  start-page: 245
  year: 1994
  ident: 10.1016/j.cie.2020.106628_b0210
  article-title: Selection of relevant features in machine learning
– volume: 43
  start-page: 1656
  year: 2013
  ident: 10.1016/j.cie.2020.106628_b0400
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2227469
– volume: 20
  start-page: 606
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0405
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2504420
– ident: 10.1016/j.cie.2020.106628_b0050
  doi: 10.1109/CIDM.2009.4938673
– ident: 10.1016/j.cie.2020.106628_b0390
  doi: 10.1007/978-3-319-13563-2_44
– volume: 214
  start-page: 108
  year: 2009
  ident: 10.1016/j.cie.2020.106628_b0190
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.090
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0245
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 13
  start-page: 145
  year: 2015
  ident: 10.1016/j.cie.2020.106628_b0195
  article-title: Multi-objective feature subset selection using non-dominated sorting genetic algorithm
  publication-title: Journal of Applied Research and Technology
  doi: 10.1016/S1665-6423(15)30013-4
– start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2020.106628_b0300
  article-title: A new binary salp swarm algorithm: development and application for optimization tasks
  publication-title: Neural Computing and Applications
– ident: 10.1016/j.cie.2020.106628_b0085
  doi: 10.1007/3-540-45356-3_83
– volume: 11
  start-page: 1561
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0355
  article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting
  publication-title: Energies
  doi: 10.3390/en11061561
– volume: 43
  start-page: 1656
  year: 2012
  ident: 10.1016/j.cie.2020.106628_b0395
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2227469
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.cie.2020.106628_b0265
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106628_b0180
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 415
  start-page: 319
  year: 2017
  ident: 10.1016/j.cie.2020.106628_b0125
  article-title: A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.06.039
– volume: 14
  start-page: 61
  year: 2019
  ident: 10.1016/j.cie.2020.106628_b0350
  article-title: Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems [research frontier]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2019.2919398
SSID ssj0004591
Score 2.5735571
Snippet •A novel multi-objective SSA algorithm is proposed.•Two essential components; dynamic time-varying strategy and the local fittest solutions are integrated with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106628
SubjectTerms Classification
Multi-objective
Optimization
Salp swarm algorithm
Wrapper feature selection
Title A dynamic locality multi-objective salp swarm algorithm for feature selection
URI https://dx.doi.org/10.1016/j.cie.2020.106628
Volume 147
WOSCitedRecordID wos000566574300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOAwYT2xjygRNRqjRxHOdYTZtgYhOHgXqL7MRhqdK0asq2P5_nX0lXbYgduERVFL9G-b6899l5fg-hT-DwkoRJ9X2wJD7hEYVXKuF-TuH1IFRSqtc7fn5LLi_ZdJp-Hwxu3V6YmzppGnZ3ly7_K9RwDsBWW2efAHdnFE7AbwAdjgA7HP8J-IlXmC7zno5TSmXrrEF_IWbGu3ktr5dee8tXc4_Xvxaran091_mGpdR1Pr1Wd8dxkLlCBrYBRKvpUvU9P2Rf07DjTz1TS83aA8F8_Lqa965OVMLuEqq6mHCmeiHqMAhBm897M_4FLyoTBqrarl3bRQqYkbosrH5zVuArsXfP8Zpam9Z1jlUtevagVzcLDLMReLuRsj7qr71fQXsrsnX5hi6VbZaBiUyZyIyJZ2gnTOKUDdHO5Ovp9Hyj0Lxptuju230Q16mBW_fxsKTZkClXr9GunV_gieHFGzSQzR56Zeca2Hrydg-93ChE-RZdTLAlDXakwVukwYo0WJMGd6TBQBpsSYM70rxDP85Or06--LbRhp-Dnlv7YUI4LSISypxJkReSloSymMgxCUsqQSEWJCY0T9NExEQIUrKUjccikCwoBU-jfTRsFo18j3CQixgkdx7BICJLyuMQNGxE4ogUMSnzAxS4ZwVYmGwT1Qylzh7F6AB97oYsTQmWv11MHACZ1ZBGG2ZApseHHT7lP47Qi57jH9Bwvfotj9Hz_GZdtauPlkl_AOSjj70
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+locality+multi-objective+salp+swarm+algorithm+for+feature+selection&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Aljarah%2C+Ibrahim&rft.au=Habib%2C+Maria&rft.au=Faris%2C+Hossam&rft.au=Al-Madi%2C+Nailah&rft.date=2020-09-01&rft.issn=0360-8352&rft.volume=147&rft.spage=106628&rft_id=info:doi/10.1016%2Fj.cie.2020.106628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2020_106628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon