Fall-Detection Algorithm Using Plantar Pressure and Acceleration Data
In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquire...
Saved in:
| Published in: | International journal of precision engineering and manufacturing Vol. 21; no. 4; pp. 725 - 737 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Seoul
Korean Society for Precision Engineering
01.04.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2234-7593, 2005-4602 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquired data with the threshold method and the decision-tree method. In general, the decision-tree method shows better performance than the threshold method, and the fall-detection accuracy increases when the acceleration and center-of-pressure (COP) data are used together, rather than when each data point is used separately. The results show that the fall-detection algorithm that applies both acceleration and COP data to the decision-tree method has a fall-detection accuracy of 95% or higher and a sufficient lead time of 317 ms on average. |
|---|---|
| AbstractList | In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquired data with the threshold method and the decision-tree method. In general, the decision-tree method shows better performance than the threshold method, and the fall-detection accuracy increases when the acceleration and center-of-pressure (COP) data are used together, rather than when each data point is used separately. The results show that the fall-detection algorithm that applies both acceleration and COP data to the decision-tree method has a fall-detection accuracy of 95% or higher and a sufficient lead time of 317 ms on average. In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquired data with the threshold method and the decision-tree method. In general, the decision-tree method shows better performance than the threshold method, and the fall-detection accuracy increases when the acceleration and center-of-pressure (COP) data are used together, rather than when each data point is used separately. The results show that the fall-detection algorithm that applies both acceleration and COP data to the decision-tree method has a fall-detection accuracy of 95% or higher and a sufficient lead time of 317 ms on average. |
| Author | Kim, Choong Hyun Park, Jisu Lee, Chang Min Park, Shinsuk |
| Author_xml | – sequence: 1 givenname: Chang Min surname: Lee fullname: Lee, Chang Min organization: Center for Bionics, Korea Institute of Science and Technology, Mechanical Engineering Department, Korea University – sequence: 2 givenname: Jisu surname: Park fullname: Park, Jisu organization: Center for Bionics, Korea Institute of Science and Technology – sequence: 3 givenname: Shinsuk surname: Park fullname: Park, Shinsuk organization: Mechanical Engineering Department, Korea University – sequence: 4 givenname: Choong Hyun orcidid: 0000-0002-0162-6342 surname: Kim fullname: Kim, Choong Hyun email: nems.kim@gmail.com organization: Center for Bionics, Korea Institute of Science and Technology |
| BookMark | eNp9kE1LAzEURYNUsNb-AVcDrqMvnzOzLP1QQbALuw6ZTKaOTDM1SSn-e2NHEFx0lUe4573LuUYj1zuL0C2BewKQPwRCBScYSIkBqCzw8QKNKYDAXAIdpZkyjnNRsis0DaGtgBEqmSjkGC1XuuvwwkZrYtu7bNZte9_G9122Ca3bZutOu6h9tvY2hIO3mXZ1NjPGdtbrE7HQUd-gy0Z3wU5_3wnarJZv8yf88vr4PJ-9YMNBRkxFzo1ltLDENlpCnopVFa8Jb0DrvKqFLsA0pTFghTZV-rQyp5WpZFFCDWyC7oa9e99_HmyI6qM_eJdOKsoKLoRkZZ5SxZAyvg_B20aZNp7KRq_bThFQP97U4E0lb-rkTR0TSv-he9_utP86D7EBCinsttb_tTpDfQMm_YLa |
| CitedBy_id | crossref_primary_10_3390_s20154063 crossref_primary_10_1155_2022_2982894 crossref_primary_10_3390_s23010495 crossref_primary_10_1109_TIE_2022_3199918 crossref_primary_10_1016_j_measurement_2020_108258 crossref_primary_10_1186_s13677_022_00337_y crossref_primary_10_1007_s11517_023_02999_5 crossref_primary_10_1016_j_imavis_2024_105195 crossref_primary_10_1088_1361_6501_acbdb7 crossref_primary_10_3390_app10072262 crossref_primary_10_3390_s23249757 crossref_primary_10_1016_j_sna_2024_115645 |
| Cites_doi | 10.1109/TNSRE.2007.916282 10.1016/S0021-9290(97)00114-0 10.1016/j.jbiomech.2008.03.042 10.1016/j.medengphy.2006.12.001 10.1007/s11517-016-1504-y 10.1016/j.gaitpost.2008.01.003 10.1109/JSEN.2004.823671 10.1016/j.jsr.2016.05.001 10.1109/TNSRE.2014.2357806 10.1109/TITB.2009.2033673 10.1109/ICOSP.2010.5656840 10.1109/EMBC.2016.7591534 10.1016/j.asoc.2015.10.062 10.1109/TITB.2009.2038904 10.1016/S0021-9290(00)00200-1 10.1016/j.gaitpost.2006.09.012 10.1007/s12541-017-0081-9 10.1016/j.medengphy.2007.12.003 10.1007/s12541-018-0038-7 |
| ContentType | Journal Article |
| Copyright | Korean Society for Precision Engineering 2019 2019© Korean Society for Precision Engineering 2019 |
| Copyright_xml | – notice: Korean Society for Precision Engineering 2019 – notice: 2019© Korean Society for Precision Engineering 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12541-019-00268-w |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2005-4602 |
| EndPage | 737 |
| ExternalDocumentID | 10_1007_s12541_019_00268_w |
| GroupedDBID | -EM .UV 06D 0R~ 0VY 203 29J 29~ 2JY 2KG 2VQ 30V 4.4 406 408 5GY 5VS 67Z 8TC 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c406t-2574ce328e1efa607223bb4d14f0aa7bd5a80cf9cc0e5acb0aae672bcb6890d03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522450300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2234-7593 |
| IngestDate | Wed Sep 17 23:54:15 EDT 2025 Sat Nov 29 02:35:19 EST 2025 Tue Nov 18 21:53:07 EST 2025 Fri Feb 21 02:35:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Center of pressure Force sensing resistor Activities of daily living Inertial measurement unit Decision tree Fall detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-2574ce328e1efa607223bb4d14f0aa7bd5a80cf9cc0e5acb0aae672bcb6890d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0162-6342 |
| PQID | 2384556397 |
| PQPubID | 2043903 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2384556397 crossref_citationtrail_10_1007_s12541_019_00268_w crossref_primary_10_1007_s12541_019_00268_w springer_journals_10_1007_s12541_019_00268_w |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul – name: Heidelberg |
| PublicationTitle | International journal of precision engineering and manufacturing |
| PublicationTitleAbbrev | Int. J. Precis. Eng. Manuf |
| PublicationYear | 2020 |
| Publisher | Korean Society for Precision Engineering Springer Nature B.V |
| Publisher_xml | – name: Korean Society for Precision Engineering – name: Springer Nature B.V |
| References | KangasMComparison of low-complexity fall detection algorithms for body attached accelerometersGait & Posture200828228529110.1016/j.gaitpost.2008.01.003 PappasIPIA reliable gyroscope-based gait-phase detection sensor embedded in a shoe insoleIEEE Sensors Journal20044226827410.1109/JSEN.2004.823671 SmeestersCHayesWCMcMahonTADisturbance type and gait speed affect fall direction and impact locationJournal of Biomechanics200134330931710.1016/S0021-9290(00)00200-1 BurnsERStevensJALeeRThe direct costs of fatal and non-fatal falls among older adults—United StatesJournal of safety Research2016589910310.1016/j.jsr.2016.05.001 TamuraTA wearable airbag to prevent fall injuriesIEEE Transactions on Information Technology in Biomedicine200913691091410.1109/TITB.2009.2033673 WHOWHO global report on falls: prevention in older age2007GenevaWorld Health Organization BourkeAKLyonsGMA threshold-based fall-detection algorithm using a bi-axial gyroscope sensorMedical Engineering & Physics2008301849010.1016/j.medengphy.2006.12.001 ShuLIn-shoe plantar pressure measurement and analysis system based on fabric pressure sensing arrayIEEE Transactions on Information Technology in Biomedicine201014376777510.1109/TITB.2009.2038904 HsiaoETRobinovitchSNCommon protective movements govern unexpected falls from standing heightJournal of Biomechanics19973111910.1016/S0021-9290(97)00114-0 Winter, D. A. (2009). Anthropometry. In Biomechanics and motor control of human movement (pp. 82–83). New Jersey: Wiley. LeeJHongYNGShinCSThe alteration in the center of pressure and duration ratio of stance sub-phases during upslope walkingInternational Journal of Precision Engineering and Manufacturing201819230931410.1007/s12541-018-0038-7 BourkeAKO’donovanKJOlaighinGThe identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of fallsMedical Engineering & Physics200830793794610.1016/j.medengphy.2007.12.003 Bourke, A. K., et al. (2016). Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. In 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE. BourkeAKO’brienJVLyonsGMEvaluation of a threshold-based tri-axial accelerometer fall detection algorithmGait & posture200726219419910.1016/j.gaitpost.2006.09.012 LeeJKRobinovitchSNParkEJInertial sensing-based pre-impact detection of falls involving near-fall scenariosIEEE Transactions on Neural Systems and Rehabilitation Engineering201523225826610.1109/TNSRE.2014.2357806 LimD-HDevelopment of real-time gait phase detection system for a lower extremity exoskeleton robotInternational Journal of Precision Engineering and Manufacturing201718568168710.1007/s12541-017-0081-9 NyanMNTayFEHMahMZEApplication of motion analysis system in pre-impact fall detectionJournal of Biomechanics200841102297230410.1016/j.jbiomech.2008.03.042 Shan, S., & Yuan, T. (2010). A wearable pre-impact fall detector using feature selection and support vector machine. In 2010 IEEE 10th international conference on signal processing (ICSP). IEEE. AzizOA comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trialsMedical & Biological Engineering & Computing20175514555361692810.1007/s11517-016-1504-y GibsonRMMultiple comparator classifier framework for accelerometer-based fall detection and diagnosticApplied Soft Computing2016399410310.1016/j.asoc.2015.10.062 WuGEXueSPortable preimpact fall detector with inertial sensorsIEEE Transactions on Neural Systems and Rehabilitation Engineering200816217818310.1109/TNSRE.2007.916282 D-H Lim (268_CR19) 2017; 18 C Smeesters (268_CR21) 2001; 34 AK Bourke (268_CR7) 2008; 30 GE Wu (268_CR9) 2008; 16 T Tamura (268_CR10) 2009; 13 JK Lee (268_CR12) 2015; 23 M Kangas (268_CR8) 2008; 28 ER Burns (268_CR2) 2016; 58 L Shu (268_CR17) 2010; 14 ET Hsiao (268_CR3) 1997; 31 J Lee (268_CR18) 2018; 19 268_CR13 AK Bourke (268_CR6) 2008; 30 268_CR20 RM Gibson (268_CR15) 2016; 39 268_CR11 O Aziz (268_CR14) 2017; 55 WHO (268_CR1) 2007 IPI Pappas (268_CR16) 2004; 4 MN Nyan (268_CR4) 2008; 41 AK Bourke (268_CR5) 2007; 26 |
| References_xml | – reference: PappasIPIA reliable gyroscope-based gait-phase detection sensor embedded in a shoe insoleIEEE Sensors Journal20044226827410.1109/JSEN.2004.823671 – reference: LeeJKRobinovitchSNParkEJInertial sensing-based pre-impact detection of falls involving near-fall scenariosIEEE Transactions on Neural Systems and Rehabilitation Engineering201523225826610.1109/TNSRE.2014.2357806 – reference: KangasMComparison of low-complexity fall detection algorithms for body attached accelerometersGait & Posture200828228529110.1016/j.gaitpost.2008.01.003 – reference: BourkeAKO’brienJVLyonsGMEvaluation of a threshold-based tri-axial accelerometer fall detection algorithmGait & posture200726219419910.1016/j.gaitpost.2006.09.012 – reference: Shan, S., & Yuan, T. (2010). A wearable pre-impact fall detector using feature selection and support vector machine. In 2010 IEEE 10th international conference on signal processing (ICSP). IEEE. – reference: BurnsERStevensJALeeRThe direct costs of fatal and non-fatal falls among older adults—United StatesJournal of safety Research2016589910310.1016/j.jsr.2016.05.001 – reference: TamuraTA wearable airbag to prevent fall injuriesIEEE Transactions on Information Technology in Biomedicine200913691091410.1109/TITB.2009.2033673 – reference: GibsonRMMultiple comparator classifier framework for accelerometer-based fall detection and diagnosticApplied Soft Computing2016399410310.1016/j.asoc.2015.10.062 – reference: Bourke, A. K., et al. (2016). Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. In 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE. – reference: LimD-HDevelopment of real-time gait phase detection system for a lower extremity exoskeleton robotInternational Journal of Precision Engineering and Manufacturing201718568168710.1007/s12541-017-0081-9 – reference: ShuLIn-shoe plantar pressure measurement and analysis system based on fabric pressure sensing arrayIEEE Transactions on Information Technology in Biomedicine201014376777510.1109/TITB.2009.2038904 – reference: SmeestersCHayesWCMcMahonTADisturbance type and gait speed affect fall direction and impact locationJournal of Biomechanics200134330931710.1016/S0021-9290(00)00200-1 – reference: AzizOA comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trialsMedical & Biological Engineering & Computing20175514555361692810.1007/s11517-016-1504-y – reference: HsiaoETRobinovitchSNCommon protective movements govern unexpected falls from standing heightJournal of Biomechanics19973111910.1016/S0021-9290(97)00114-0 – reference: WuGEXueSPortable preimpact fall detector with inertial sensorsIEEE Transactions on Neural Systems and Rehabilitation Engineering200816217818310.1109/TNSRE.2007.916282 – reference: BourkeAKLyonsGMA threshold-based fall-detection algorithm using a bi-axial gyroscope sensorMedical Engineering & Physics2008301849010.1016/j.medengphy.2006.12.001 – reference: BourkeAKO’donovanKJOlaighinGThe identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of fallsMedical Engineering & Physics200830793794610.1016/j.medengphy.2007.12.003 – reference: NyanMNTayFEHMahMZEApplication of motion analysis system in pre-impact fall detectionJournal of Biomechanics200841102297230410.1016/j.jbiomech.2008.03.042 – reference: LeeJHongYNGShinCSThe alteration in the center of pressure and duration ratio of stance sub-phases during upslope walkingInternational Journal of Precision Engineering and Manufacturing201819230931410.1007/s12541-018-0038-7 – reference: Winter, D. A. (2009). Anthropometry. In Biomechanics and motor control of human movement (pp. 82–83). New Jersey: Wiley. – reference: WHOWHO global report on falls: prevention in older age2007GenevaWorld Health Organization – volume: 16 start-page: 178 issue: 2 year: 2008 ident: 268_CR9 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.916282 – volume: 31 start-page: 1 issue: 1 year: 1997 ident: 268_CR3 publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(97)00114-0 – volume: 41 start-page: 2297 issue: 10 year: 2008 ident: 268_CR4 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2008.03.042 – volume: 30 start-page: 84 issue: 1 year: 2008 ident: 268_CR6 publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2006.12.001 – volume: 55 start-page: 45 issue: 1 year: 2017 ident: 268_CR14 publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-016-1504-y – volume: 28 start-page: 285 issue: 2 year: 2008 ident: 268_CR8 publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2008.01.003 – volume: 4 start-page: 268 issue: 2 year: 2004 ident: 268_CR16 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2004.823671 – volume: 58 start-page: 99 year: 2016 ident: 268_CR2 publication-title: Journal of safety Research doi: 10.1016/j.jsr.2016.05.001 – volume: 23 start-page: 258 issue: 2 year: 2015 ident: 268_CR12 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2014.2357806 – volume: 13 start-page: 910 issue: 6 year: 2009 ident: 268_CR10 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2033673 – ident: 268_CR20 – volume-title: WHO global report on falls: prevention in older age year: 2007 ident: 268_CR1 – ident: 268_CR11 doi: 10.1109/ICOSP.2010.5656840 – ident: 268_CR13 doi: 10.1109/EMBC.2016.7591534 – volume: 39 start-page: 94 year: 2016 ident: 268_CR15 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.062 – volume: 14 start-page: 767 issue: 3 year: 2010 ident: 268_CR17 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2038904 – volume: 34 start-page: 309 issue: 3 year: 2001 ident: 268_CR21 publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00200-1 – volume: 26 start-page: 194 issue: 2 year: 2007 ident: 268_CR5 publication-title: Gait & posture doi: 10.1016/j.gaitpost.2006.09.012 – volume: 18 start-page: 681 issue: 5 year: 2017 ident: 268_CR19 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-017-0081-9 – volume: 30 start-page: 937 issue: 7 year: 2008 ident: 268_CR7 publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2007.12.003 – volume: 19 start-page: 309 issue: 2 year: 2018 ident: 268_CR18 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-018-0038-7 |
| SSID | ssib031263586 ssib036278122 ssib053376809 ssj0068040 |
| Score | 2.2743533 |
| Snippet | In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 725 |
| SubjectTerms | Algorithms Data acquisition Data points Decision analysis Decision trees Engineering Fall detection Industrial and Production Engineering Inertial platforms Lead time Materials Science Performance evaluation Plantar pressure Pressure measurement Regular Paper |
| Title | Fall-Detection Algorithm Using Plantar Pressure and Acceleration Data |
| URI | https://link.springer.com/article/10.1007/s12541-019-00268-w https://www.proquest.com/docview/2384556397 |
| Volume | 21 |
| WOSCitedRecordID | wos000522450300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2005-4602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068040 issn: 2234-7593 databaseCode: RSV dateStart: 20090101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8RgoBy4QaS0zfo4TmwTBzQhHtNuVZImgFQ61BX293HSdgUESHCr2rRVbSef3difETplVHuR7kqY4koRJqQmEU1cohPzzy1hIrSUQuOrYDQKJ5PouioKm9XZ7vWWpF2pm2I3iGVM6BsREziEZL6MVgDuQtOw4eZ2XFuR5xh-lYYUDVboAFBsAeLg34CLbUiryvUajm3ZJOAkI0E38qrSmu_f-Rm-Gp_0yzaqRafh5v--awttVN4o7pXms42WVLaD1j9wFO6iwZCnKemrwuZsZbiXPkzzp-LxGdtsA2y6HhU8x2WdYa4wzxLckxLgrDQu3OcF30P3w8HdxSWpei8QCRBfEJjJTCrPDZWjNPdpAOIRgiUO05TzQCRdHlKpIymp6nIp4KTyA1dI4YegbOrto1Y2zdQBwkqbtlegFMcTxl3gAMu-L4UrFFM-o23k1CKNZUVMbvpjpHFDqWxEFIOIYiuieN5GZ4t7Xkpajl9Hd2pNxdUUncXgqzDDjhYFbXRea6a5_PPTDv82_AituSZGt9k-HdQq8ld1jFblW_E0y0-s6b4Dtirjkg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEH3ojxzIEbROoj6-M4AROIMSEe025VkqYwaXSoK_D3cdKWAgIkuFVt2qq2k89u7M8AB8xK3DBpSZziSlEmZEJDK3ZoEut_bjETgaEU6nf9Xi8YDMKrsihsUmW7V1uSZqWui90wltGhb0h14BDQ12mYYYhYmjH_-qZfWZFra36VmhQNV2gfUewdxNG_QRdbk1YV6zUem7JJxElG_VbolqU137_zM3zVPumXbVSDTp2l_33XMiyW3ihpF-azAlMqXYWFDxyFa3Da4aMRPVG5ydlKSXt0P86G-cMjMdkGRHc9ynlGijrDTBGexqQtJcJZYVzkhOd8He46p7fHZ7TsvUAlQnxOcSYzqVwnULZKuGf5KB4hWGyzxOLcF3GLB5ZMQikt1eJS4Enl-Y6QwgtQ2Za7AY10nKpNICrRba9QKbYrtLvAEZY9TwpHKKY8ZjXBrkQayZKYXPfHGEU1pbIWUYQiioyIotcmHL7f81TQcvw6eqfSVFRO0UmEvgrT7Gih34SjSjP15Z-ftvW34fswd3Z72Y26572LbZh3dLxuMn92oJFnz2oXZuVLPpxke8aM3wBpTuZ2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb3F95uBNg31k-zgurouiLIIPvJUkTXRhrdKt-vedpK1VUUG8lTZt6cwk30wz8w3AHnO0H-uOxCmuFGVCaho7qUd1av65pUxEllLo5jwcDKLb2_jiQxW_zXavtyTLmgbD0pQVh0-pPmwK3zCuMWFwTE0QEdHXSZhiJpHexOuXN7VF-a7hWmkI0nC1DhHR3gEdfR10tw2BVbl247EtoUTMZDTsxH5VZvP9Oz9DWeOfftlStUjVX_j_Ny7CfOWlkm5pVkswobJlmPvAXbgCx30-GtGeKmwuV0a6o7vHfFjcPxCbhUBMN6SC56SsP8wV4VlKulIizJVGR3q84Ktw3T--OjqhVU8GKhH6C4oznEnle5FyleaBE6KohGCpy7TDeSjSDo8cqWMpHdXhUuBJFYSekCKI0Agcfw1a2WOm1oEobdphoYJcXxg3giNcB4EUnlBMBcxpg1uLN5EVYbnpmzFKGqplI6IERZRYESWvbdh_v-eppOv4dfRWrbWkmrrjBH0YZljT4rANB7WWmss_P23jb8N3Yeai10_OTwdnmzDrmTDeJgRtQavIn9U2TMuXYjjOd6xFvwGnw-9a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall-Detection+Algorithm+Using+Plantar+Pressure+and+Acceleration+Data&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Lee%2C+Chang+Min&rft.au=Park%2C+Jisu&rft.au=Park%2C+Shinsuk&rft.au=Kim%2C+Choong+Hyun&rft.date=2020-04-01&rft.pub=Korean+Society+for+Precision+Engineering&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=21&rft.issue=4&rft.spage=725&rft.epage=737&rft_id=info:doi/10.1007%2Fs12541-019-00268-w&rft.externalDocID=10_1007_s12541_019_00268_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon |