Fall-Detection Algorithm Using Plantar Pressure and Acceleration Data

In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquire...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of precision engineering and manufacturing Ročník 21; číslo 4; s. 725 - 737
Hlavní autoři: Lee, Chang Min, Park, Jisu, Park, Shinsuk, Kim, Choong Hyun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul Korean Society for Precision Engineering 01.04.2020
Springer Nature B.V
Témata:
ISSN:2234-7593, 2005-4602
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquired data with the threshold method and the decision-tree method. In general, the decision-tree method shows better performance than the threshold method, and the fall-detection accuracy increases when the acceleration and center-of-pressure (COP) data are used together, rather than when each data point is used separately. The results show that the fall-detection algorithm that applies both acceleration and COP data to the decision-tree method has a fall-detection accuracy of 95% or higher and a sufficient lead time of 317 ms on average.
AbstractList In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquired data with the threshold method and the decision-tree method. In general, the decision-tree method shows better performance than the threshold method, and the fall-detection accuracy increases when the acceleration and center-of-pressure (COP) data are used together, rather than when each data point is used separately. The results show that the fall-detection algorithm that applies both acceleration and COP data to the decision-tree method has a fall-detection accuracy of 95% or higher and a sufficient lead time of 317 ms on average.
In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both an inertial measurement unit and a plantar-pressure measurement unit and the fall-detection performance is evaluated by analyzing the acquired data with the threshold method and the decision-tree method. In general, the decision-tree method shows better performance than the threshold method, and the fall-detection accuracy increases when the acceleration and center-of-pressure (COP) data are used together, rather than when each data point is used separately. The results show that the fall-detection algorithm that applies both acceleration and COP data to the decision-tree method has a fall-detection accuracy of 95% or higher and a sufficient lead time of 317 ms on average.
Author Kim, Choong Hyun
Park, Jisu
Lee, Chang Min
Park, Shinsuk
Author_xml – sequence: 1
  givenname: Chang Min
  surname: Lee
  fullname: Lee, Chang Min
  organization: Center for Bionics, Korea Institute of Science and Technology, Mechanical Engineering Department, Korea University
– sequence: 2
  givenname: Jisu
  surname: Park
  fullname: Park, Jisu
  organization: Center for Bionics, Korea Institute of Science and Technology
– sequence: 3
  givenname: Shinsuk
  surname: Park
  fullname: Park, Shinsuk
  organization: Mechanical Engineering Department, Korea University
– sequence: 4
  givenname: Choong Hyun
  orcidid: 0000-0002-0162-6342
  surname: Kim
  fullname: Kim, Choong Hyun
  email: nems.kim@gmail.com
  organization: Center for Bionics, Korea Institute of Science and Technology
BookMark eNp9kE1LAzEURYNUsNb-AVcDrqMvnzOzLP1QQbALuw6ZTKaOTDM1SSn-e2NHEFx0lUe4573LuUYj1zuL0C2BewKQPwRCBScYSIkBqCzw8QKNKYDAXAIdpZkyjnNRsis0DaGtgBEqmSjkGC1XuuvwwkZrYtu7bNZte9_G9122Ca3bZutOu6h9tvY2hIO3mXZ1NjPGdtbrE7HQUd-gy0Z3wU5_3wnarJZv8yf88vr4PJ-9YMNBRkxFzo1ltLDENlpCnopVFa8Jb0DrvKqFLsA0pTFghTZV-rQyp5WpZFFCDWyC7oa9e99_HmyI6qM_eJdOKsoKLoRkZZ5SxZAyvg_B20aZNp7KRq_bThFQP97U4E0lb-rkTR0TSv-he9_utP86D7EBCinsttb_tTpDfQMm_YLa
CitedBy_id crossref_primary_10_3390_s20154063
crossref_primary_10_1155_2022_2982894
crossref_primary_10_3390_s23010495
crossref_primary_10_1109_TIE_2022_3199918
crossref_primary_10_1016_j_measurement_2020_108258
crossref_primary_10_1186_s13677_022_00337_y
crossref_primary_10_1007_s11517_023_02999_5
crossref_primary_10_1016_j_imavis_2024_105195
crossref_primary_10_1088_1361_6501_acbdb7
crossref_primary_10_3390_app10072262
crossref_primary_10_3390_s23249757
crossref_primary_10_1016_j_sna_2024_115645
Cites_doi 10.1109/TNSRE.2007.916282
10.1016/S0021-9290(97)00114-0
10.1016/j.jbiomech.2008.03.042
10.1016/j.medengphy.2006.12.001
10.1007/s11517-016-1504-y
10.1016/j.gaitpost.2008.01.003
10.1109/JSEN.2004.823671
10.1016/j.jsr.2016.05.001
10.1109/TNSRE.2014.2357806
10.1109/TITB.2009.2033673
10.1109/ICOSP.2010.5656840
10.1109/EMBC.2016.7591534
10.1016/j.asoc.2015.10.062
10.1109/TITB.2009.2038904
10.1016/S0021-9290(00)00200-1
10.1016/j.gaitpost.2006.09.012
10.1007/s12541-017-0081-9
10.1016/j.medengphy.2007.12.003
10.1007/s12541-018-0038-7
ContentType Journal Article
Copyright Korean Society for Precision Engineering 2019
2019© Korean Society for Precision Engineering 2019
Copyright_xml – notice: Korean Society for Precision Engineering 2019
– notice: 2019© Korean Society for Precision Engineering 2019
DBID AAYXX
CITATION
DOI 10.1007/s12541-019-00268-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4602
EndPage 737
ExternalDocumentID 10_1007_s12541_019_00268_w
GroupedDBID -EM
.UV
06D
0R~
0VY
203
29J
29~
2JY
2KG
2VQ
30V
4.4
406
408
5GY
5VS
67Z
8TC
96X
9ZL
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c406t-2574ce328e1efa607223bb4d14f0aa7bd5a80cf9cc0e5acb0aae672bcb6890d03
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522450300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2234-7593
IngestDate Wed Sep 17 23:54:15 EDT 2025
Sat Nov 29 02:35:19 EST 2025
Tue Nov 18 21:53:07 EST 2025
Fri Feb 21 02:35:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Center of pressure
Force sensing resistor
Activities of daily living
Inertial measurement unit
Decision tree
Fall detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2574ce328e1efa607223bb4d14f0aa7bd5a80cf9cc0e5acb0aae672bcb6890d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0162-6342
PQID 2384556397
PQPubID 2043903
PageCount 13
ParticipantIDs proquest_journals_2384556397
crossref_citationtrail_10_1007_s12541_019_00268_w
crossref_primary_10_1007_s12541_019_00268_w
springer_journals_10_1007_s12541_019_00268_w
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle International journal of precision engineering and manufacturing
PublicationTitleAbbrev Int. J. Precis. Eng. Manuf
PublicationYear 2020
Publisher Korean Society for Precision Engineering
Springer Nature B.V
Publisher_xml – name: Korean Society for Precision Engineering
– name: Springer Nature B.V
References KangasMComparison of low-complexity fall detection algorithms for body attached accelerometersGait & Posture200828228529110.1016/j.gaitpost.2008.01.003
PappasIPIA reliable gyroscope-based gait-phase detection sensor embedded in a shoe insoleIEEE Sensors Journal20044226827410.1109/JSEN.2004.823671
SmeestersCHayesWCMcMahonTADisturbance type and gait speed affect fall direction and impact locationJournal of Biomechanics200134330931710.1016/S0021-9290(00)00200-1
BurnsERStevensJALeeRThe direct costs of fatal and non-fatal falls among older adults—United StatesJournal of safety Research2016589910310.1016/j.jsr.2016.05.001
TamuraTA wearable airbag to prevent fall injuriesIEEE Transactions on Information Technology in Biomedicine200913691091410.1109/TITB.2009.2033673
WHOWHO global report on falls: prevention in older age2007GenevaWorld Health Organization
BourkeAKLyonsGMA threshold-based fall-detection algorithm using a bi-axial gyroscope sensorMedical Engineering & Physics2008301849010.1016/j.medengphy.2006.12.001
ShuLIn-shoe plantar pressure measurement and analysis system based on fabric pressure sensing arrayIEEE Transactions on Information Technology in Biomedicine201014376777510.1109/TITB.2009.2038904
HsiaoETRobinovitchSNCommon protective movements govern unexpected falls from standing heightJournal of Biomechanics19973111910.1016/S0021-9290(97)00114-0
Winter, D. A. (2009). Anthropometry. In Biomechanics and motor control of human movement (pp. 82–83). New Jersey: Wiley.
LeeJHongYNGShinCSThe alteration in the center of pressure and duration ratio of stance sub-phases during upslope walkingInternational Journal of Precision Engineering and Manufacturing201819230931410.1007/s12541-018-0038-7
BourkeAKO’donovanKJOlaighinGThe identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of fallsMedical Engineering & Physics200830793794610.1016/j.medengphy.2007.12.003
Bourke, A. K., et al. (2016). Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. In 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE.
BourkeAKO’brienJVLyonsGMEvaluation of a threshold-based tri-axial accelerometer fall detection algorithmGait & posture200726219419910.1016/j.gaitpost.2006.09.012
LeeJKRobinovitchSNParkEJInertial sensing-based pre-impact detection of falls involving near-fall scenariosIEEE Transactions on Neural Systems and Rehabilitation Engineering201523225826610.1109/TNSRE.2014.2357806
LimD-HDevelopment of real-time gait phase detection system for a lower extremity exoskeleton robotInternational Journal of Precision Engineering and Manufacturing201718568168710.1007/s12541-017-0081-9
NyanMNTayFEHMahMZEApplication of motion analysis system in pre-impact fall detectionJournal of Biomechanics200841102297230410.1016/j.jbiomech.2008.03.042
Shan, S., & Yuan, T. (2010). A wearable pre-impact fall detector using feature selection and support vector machine. In 2010 IEEE 10th international conference on signal processing (ICSP). IEEE.
AzizOA comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trialsMedical & Biological Engineering & Computing20175514555361692810.1007/s11517-016-1504-y
GibsonRMMultiple comparator classifier framework for accelerometer-based fall detection and diagnosticApplied Soft Computing2016399410310.1016/j.asoc.2015.10.062
WuGEXueSPortable preimpact fall detector with inertial sensorsIEEE Transactions on Neural Systems and Rehabilitation Engineering200816217818310.1109/TNSRE.2007.916282
D-H Lim (268_CR19) 2017; 18
C Smeesters (268_CR21) 2001; 34
AK Bourke (268_CR7) 2008; 30
GE Wu (268_CR9) 2008; 16
T Tamura (268_CR10) 2009; 13
JK Lee (268_CR12) 2015; 23
M Kangas (268_CR8) 2008; 28
ER Burns (268_CR2) 2016; 58
L Shu (268_CR17) 2010; 14
ET Hsiao (268_CR3) 1997; 31
J Lee (268_CR18) 2018; 19
268_CR13
AK Bourke (268_CR6) 2008; 30
268_CR20
RM Gibson (268_CR15) 2016; 39
268_CR11
O Aziz (268_CR14) 2017; 55
WHO (268_CR1) 2007
IPI Pappas (268_CR16) 2004; 4
MN Nyan (268_CR4) 2008; 41
AK Bourke (268_CR5) 2007; 26
References_xml – reference: PappasIPIA reliable gyroscope-based gait-phase detection sensor embedded in a shoe insoleIEEE Sensors Journal20044226827410.1109/JSEN.2004.823671
– reference: LeeJKRobinovitchSNParkEJInertial sensing-based pre-impact detection of falls involving near-fall scenariosIEEE Transactions on Neural Systems and Rehabilitation Engineering201523225826610.1109/TNSRE.2014.2357806
– reference: KangasMComparison of low-complexity fall detection algorithms for body attached accelerometersGait & Posture200828228529110.1016/j.gaitpost.2008.01.003
– reference: BourkeAKO’brienJVLyonsGMEvaluation of a threshold-based tri-axial accelerometer fall detection algorithmGait & posture200726219419910.1016/j.gaitpost.2006.09.012
– reference: Shan, S., & Yuan, T. (2010). A wearable pre-impact fall detector using feature selection and support vector machine. In 2010 IEEE 10th international conference on signal processing (ICSP). IEEE.
– reference: BurnsERStevensJALeeRThe direct costs of fatal and non-fatal falls among older adults—United StatesJournal of safety Research2016589910310.1016/j.jsr.2016.05.001
– reference: TamuraTA wearable airbag to prevent fall injuriesIEEE Transactions on Information Technology in Biomedicine200913691091410.1109/TITB.2009.2033673
– reference: GibsonRMMultiple comparator classifier framework for accelerometer-based fall detection and diagnosticApplied Soft Computing2016399410310.1016/j.asoc.2015.10.062
– reference: Bourke, A. K., et al. (2016). Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. In 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE.
– reference: LimD-HDevelopment of real-time gait phase detection system for a lower extremity exoskeleton robotInternational Journal of Precision Engineering and Manufacturing201718568168710.1007/s12541-017-0081-9
– reference: ShuLIn-shoe plantar pressure measurement and analysis system based on fabric pressure sensing arrayIEEE Transactions on Information Technology in Biomedicine201014376777510.1109/TITB.2009.2038904
– reference: SmeestersCHayesWCMcMahonTADisturbance type and gait speed affect fall direction and impact locationJournal of Biomechanics200134330931710.1016/S0021-9290(00)00200-1
– reference: AzizOA comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trialsMedical & Biological Engineering & Computing20175514555361692810.1007/s11517-016-1504-y
– reference: HsiaoETRobinovitchSNCommon protective movements govern unexpected falls from standing heightJournal of Biomechanics19973111910.1016/S0021-9290(97)00114-0
– reference: WuGEXueSPortable preimpact fall detector with inertial sensorsIEEE Transactions on Neural Systems and Rehabilitation Engineering200816217818310.1109/TNSRE.2007.916282
– reference: BourkeAKLyonsGMA threshold-based fall-detection algorithm using a bi-axial gyroscope sensorMedical Engineering & Physics2008301849010.1016/j.medengphy.2006.12.001
– reference: BourkeAKO’donovanKJOlaighinGThe identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of fallsMedical Engineering & Physics200830793794610.1016/j.medengphy.2007.12.003
– reference: NyanMNTayFEHMahMZEApplication of motion analysis system in pre-impact fall detectionJournal of Biomechanics200841102297230410.1016/j.jbiomech.2008.03.042
– reference: LeeJHongYNGShinCSThe alteration in the center of pressure and duration ratio of stance sub-phases during upslope walkingInternational Journal of Precision Engineering and Manufacturing201819230931410.1007/s12541-018-0038-7
– reference: Winter, D. A. (2009). Anthropometry. In Biomechanics and motor control of human movement (pp. 82–83). New Jersey: Wiley.
– reference: WHOWHO global report on falls: prevention in older age2007GenevaWorld Health Organization
– volume: 16
  start-page: 178
  issue: 2
  year: 2008
  ident: 268_CR9
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.916282
– volume: 31
  start-page: 1
  issue: 1
  year: 1997
  ident: 268_CR3
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(97)00114-0
– volume: 41
  start-page: 2297
  issue: 10
  year: 2008
  ident: 268_CR4
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2008.03.042
– volume: 30
  start-page: 84
  issue: 1
  year: 2008
  ident: 268_CR6
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2006.12.001
– volume: 55
  start-page: 45
  issue: 1
  year: 2017
  ident: 268_CR14
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-016-1504-y
– volume: 28
  start-page: 285
  issue: 2
  year: 2008
  ident: 268_CR8
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2008.01.003
– volume: 4
  start-page: 268
  issue: 2
  year: 2004
  ident: 268_CR16
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2004.823671
– volume: 58
  start-page: 99
  year: 2016
  ident: 268_CR2
  publication-title: Journal of safety Research
  doi: 10.1016/j.jsr.2016.05.001
– volume: 23
  start-page: 258
  issue: 2
  year: 2015
  ident: 268_CR12
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2014.2357806
– volume: 13
  start-page: 910
  issue: 6
  year: 2009
  ident: 268_CR10
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2009.2033673
– ident: 268_CR20
– volume-title: WHO global report on falls: prevention in older age
  year: 2007
  ident: 268_CR1
– ident: 268_CR11
  doi: 10.1109/ICOSP.2010.5656840
– ident: 268_CR13
  doi: 10.1109/EMBC.2016.7591534
– volume: 39
  start-page: 94
  year: 2016
  ident: 268_CR15
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.062
– volume: 14
  start-page: 767
  issue: 3
  year: 2010
  ident: 268_CR17
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2009.2038904
– volume: 34
  start-page: 309
  issue: 3
  year: 2001
  ident: 268_CR21
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00200-1
– volume: 26
  start-page: 194
  issue: 2
  year: 2007
  ident: 268_CR5
  publication-title: Gait & posture
  doi: 10.1016/j.gaitpost.2006.09.012
– volume: 18
  start-page: 681
  issue: 5
  year: 2017
  ident: 268_CR19
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-017-0081-9
– volume: 30
  start-page: 937
  issue: 7
  year: 2008
  ident: 268_CR7
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2007.12.003
– volume: 19
  start-page: 309
  issue: 2
  year: 2018
  ident: 268_CR18
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-018-0038-7
SSID ssib031263586
ssib036278122
ssib053376809
ssj0068040
Score 2.2744505
Snippet In this study, experiments are conducted for four types of falls and eight types of activities of daily living with an integrated sensor system that uses both...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 725
SubjectTerms Algorithms
Data acquisition
Data points
Decision analysis
Decision trees
Engineering
Fall detection
Industrial and Production Engineering
Inertial platforms
Lead time
Materials Science
Performance evaluation
Plantar pressure
Pressure measurement
Regular Paper
Title Fall-Detection Algorithm Using Plantar Pressure and Acceleration Data
URI https://link.springer.com/article/10.1007/s12541-019-00268-w
https://www.proquest.com/docview/2384556397
Volume 21
WOSCitedRecordID wos000522450300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2005-4602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068040
  issn: 2234-7593
  databaseCode: RSV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8RgoBy4QaQ-0qY5TmwTpwnx0m5VkiaAVDrUFfb3cfpYAQES3Ko2bRXH8Wcr9meETh1pjJKwkUTCGKGh4CQKAkG4YzzDdGQSXTWbYONxNJnwq7oobNZkuzdHkqWlbovdIJaxoS8nNnCIyHwZrQDcRbZhw_XNfaNFvmv5VVpSNLDQDFBsAeLg34CLbUmrKnsN12XZJOAkJSzgfl1a8_0_P8NX65N-OUYt0Wm0-b95baGN2hvF_Up9ttGSznbQ-geOwl00HIk0JQNdlDlbGe6nD9P8qXh8xmW2AbZdjwqR46rOMNdYZAnuKwVwVikXHohC7KG70fD24pLUvReIAogvCOxkqrTvRdrVRoQOA_FISROXGkcIJpNARI4yXClHB0JJuKlD5kklw4g7iePvo042zfQBwlpR6bOECkYN9Y3klPuuYGBMDAtEQLvIbUQaq5qY3PbHSOOWUtmKKAYRxaWI4nkXnS3eealoOX4d3WtWKq636CwGX4VadjTOuui8WZn28c9fO_zb8CO05tkYvcz26aFOkb_qY7Sq3oqnWX5Squ47aTXjsg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHLxpoN2mm-a4qIuiLuILbyVJExXWKt2qf99JH1ZFBb2VNm3JZDLfDJn5BmDbU9ZqhRtJJpxT1pGCRmEoqfBs23IT2cSUzSZ4vx_d3IizqihsWGe710eShaVuit0wlnGhr6AucIjo6yiMM0Qsx5h_fnFda1HgO36VhhQNLTRHFHsHcfRv0MV2pFWlvcbromwScZJRHoqgKq35_p-f4avxSb8coxbo1Jv937zmYKbyRkm3VJ95GDHpAkx_4ChchIOeHAzovsmLnK2UdAe3j9l9fvdAimwD4roe5TIjZZ1hZohME9LVGuGsVC6yL3O5BFe9g8u9Q1r1XqAaIT6nuJOZNkE7Mr6xsuNxFI9SLPGZ9aTkKgll5GkrtPZMKLXCm6bD20qrTiS8xAuWYSx9TM0KEKOZCnjCJGeWBVYJJgJfcjQmlocyZC3wa5HGuiImd_0xBnFDqexEFKOI4kJE8WsLdt7feSppOX4dvV6vVFxt0WGMvgpz7GiCt2C3Xpnm8c9fW_3b8C2YPLw8PYlPjvrHazDVdvF6kfmzDmN59mw2YEK_5PfDbLNQ4zcd2eaW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb3F95uBNg-023TTHxbUoyiL4wFtJ0kQXapVudf--SR92FRXEW2nTlkxm8s2QmW8ADhyhtRTGkHhMKSZdznDg-xwzR3c0VYGOVdlsgg4Gwf09u5qo4i-y3esjybKmwbI0pfnxS6yPm8I3E9fYMJhhG0QEeDwNM8Qm0tt4_fqu1ijPtVwrDUGa2a2pQbQPQDe-jnG3LYFVuXeb66KE0mAmwdRnXlVm8_0_P0NZ459-OVItkCpc-v8cl2Gx8lJRr1SrFZhS6SosTHAXrsFpyJME91Ve5HKlqJc8PGfD_PEJFVkIyHZDynmGyvrDTCGexqgnpYG5UulQn-d8HW7D05uTM1z1ZMDSQH-OjYUTqbxOoFyledehRlRCkNgl2uGcitjngSM1k9JRPpfC3FRd2hFSdAPmxI63Aa30OVWbgJQkwqMx4ZRo4mnBCPNcTs0mo6nPfdIGtxZvJCvCcts3I4kaqmUrosiIKCpEFI3bcPjxzktJ1_Hr6J161aLKdEeR8WGIZU1jtA1H9So1j3_-2tbfhu_D3FU_jC7PBxfbMN-xYXyRELQDrTx7VbswK9_y4SjbKzT6HWJG73o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall-Detection+Algorithm+Using+Plantar+Pressure+and+Acceleration+Data&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Lee+Chang+Min&rft.au=Park%2C+Jisu&rft.au=Park+Shinsuk&rft.au=Kim%2C+Choong+Hyun&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=21&rft.issue=4&rft.spage=725&rft.epage=737&rft_id=info:doi/10.1007%2Fs12541-019-00268-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon