Supernodal sparse Cholesky factorization on graphics processing units

SUMMARY Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous scientific computing applications. A large number of sparse Cholesky factorization algorithms have previously emerged, exploiting archite...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 26; číslo 16; s. 2713 - 2726
Hlavní autoři: Zou, Dan, Dou, Yong, Guo, Song, Li, Rongchun, Deng, Lin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Blackwell Publishing Ltd 01.11.2014
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract SUMMARY Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous scientific computing applications. A large number of sparse Cholesky factorization algorithms have previously emerged, exploiting architectural features for various computing platforms. The recent use of graphics processing units (GPUs) to accelerate structured parallel applications shows the potential to achieve significant acceleration relative to desktop performance. However, sparse Cholesky factorization has not been explored sufficiently because of the complexity involved in its efficient implementation and the concerns of low GPU utilization. In this paper, we present a new approach for sparse Cholesky factorization on GPUs. We present the organization of the sparse matrix supernode data structure for GPU and propose a queue‐based approach for the generation and scheduling of GPU tasks with dense linear algebraic operations. We also design a subtree‐based parallel method for multi‐GPU system. These approaches increase GPU utilization, thus resulting in substantial computational time reduction. Comparisons are made with the existing parallel solvers by using problems arising from practical applications. The experiment results show that the proposed approaches can substantially improve sparse Cholesky factorization performance on GPUs. Relative to a highly optimized parallel algorithm on a 12‐core node, we were able to obtain speedups in the range 1.59× to 2.31× by using one GPU and 1.80× to 3.21× by using two GPUs. Relative to a state‐of‐the‐art solver based on supernodal method for CPU‐GPU heterogeneous platform, we were able to obtain speedups in the range 1.52× to 2.30× by using one GPU and 2.15× to 2.76× by using two GPUs. Concurrency and Computation: Practice and Experience, 2013. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous scientific computing applications. A large number of sparse Cholesky factorization algorithms have previously emerged, exploiting architectural features for various computing platforms. The recent use of graphics processing units (GPUs) to accelerate structured parallel applications shows the potential to achieve significant acceleration relative to desktop performance. However, sparse Cholesky factorization has not been explored sufficiently because of the complexity involved in its efficient implementation and the concerns of low GPU utilization. In this paper, we present a new approach for sparse Cholesky factorization on GPUs. We present the organization of the sparse matrix supernode data structure for GPU and propose a queue-based approach for the generation and scheduling of GPU tasks with dense linear algebraic operations. We also design a subtree-based parallel method for multi-GPU system. These approaches increase GPU utilization, thus resulting in substantial computational time reduction. Comparisons are made with the existing parallel solvers by using problems arising from practical applications. The experiment results show that the proposed approaches can substantially improve sparse Cholesky factorization performance on GPUs. Relative to a highly optimized parallel algorithm on a 12-core node, we were able to obtain speedups in the range 1.59 to 2.31 by using one GPU and 1.80 to 3.21 by using two GPUs. Relative to a state-of-the-art solver based on supernodal method for CPU-GPU heterogeneous platform, we were able to obtain speedups in the range 1.52 to 2.30 by using one GPU and 2.15 to 2.76 by using two GPUs. Concurrency and Computation: Practice and Experience, 2013. Copyright copyright 2013 John Wiley & Sons, Ltd.
SUMMARY Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous scientific computing applications. A large number of sparse Cholesky factorization algorithms have previously emerged, exploiting architectural features for various computing platforms. The recent use of graphics processing units (GPUs) to accelerate structured parallel applications shows the potential to achieve significant acceleration relative to desktop performance. However, sparse Cholesky factorization has not been explored sufficiently because of the complexity involved in its efficient implementation and the concerns of low GPU utilization. In this paper, we present a new approach for sparse Cholesky factorization on GPUs. We present the organization of the sparse matrix supernode data structure for GPU and propose a queue‐based approach for the generation and scheduling of GPU tasks with dense linear algebraic operations. We also design a subtree‐based parallel method for multi‐GPU system. These approaches increase GPU utilization, thus resulting in substantial computational time reduction. Comparisons are made with the existing parallel solvers by using problems arising from practical applications. The experiment results show that the proposed approaches can substantially improve sparse Cholesky factorization performance on GPUs. Relative to a highly optimized parallel algorithm on a 12‐core node, we were able to obtain speedups in the range 1.59× to 2.31× by using one GPU and 1.80× to 3.21× by using two GPUs. Relative to a state‐of‐the‐art solver based on supernodal method for CPU‐GPU heterogeneous platform, we were able to obtain speedups in the range 1.52× to 2.30× by using one GPU and 2.15× to 2.76× by using two GPUs. Concurrency and Computation: Practice and Experience, 2013. Copyright © 2013 John Wiley & Sons, Ltd.
Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous scientific computing applications. A large number of sparse Cholesky factorization algorithms have previously emerged, exploiting architectural features for various computing platforms. The recent use of graphics processing units (GPUs) to accelerate structured parallel applications shows the potential to achieve significant acceleration relative to desktop performance. However, sparse Cholesky factorization has not been explored sufficiently because of the complexity involved in its efficient implementation and the concerns of low GPU utilization. In this paper, we present a new approach for sparse Cholesky factorization on GPUs. We present the organization of the sparse matrix supernode data structure for GPU and propose a queue‐based approach for the generation and scheduling of GPU tasks with dense linear algebraic operations. We also design a subtree‐based parallel method for multi‐GPU system. These approaches increase GPU utilization, thus resulting in substantial computational time reduction. Comparisons are made with the existing parallel solvers by using problems arising from practical applications. The experiment results show that the proposed approaches can substantially improve sparse Cholesky factorization performance on GPUs. Relative to a highly optimized parallel algorithm on a 12‐core node, we were able to obtain speedups in the range 1.59× to 2.31× by using one GPU and 1.80× to 3.21× by using two GPUs. Relative to a state‐of‐the‐art solver based on supernodal method for CPU‐GPU heterogeneous platform, we were able to obtain speedups in the range 1.52× to 2.30× by using one GPU and 2.15× to 2.76× by using two GPUs. Concurrency and Computation: Practice and Experience, 2013. Copyright © 2013 John Wiley & Sons, Ltd.
Author Deng, Lin
Zou, Dan
Guo, Song
Dou, Yong
Li, Rongchun
Author_xml – sequence: 1
  givenname: Dan
  surname: Zou
  fullname: Zou, Dan
  email: Correspondence to: Dan Zou, National University of Defense Technology, School of Computer, Changsha, China., zoudan.nudt@gmail.com
  organization: School of Computer, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Yong
  surname: Dou
  fullname: Dou, Yong
  organization: School of Computer, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Song
  surname: Guo
  fullname: Guo, Song
  organization: School of Computer, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Rongchun
  surname: Li
  fullname: Li, Rongchun
  organization: School of Computer, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Lin
  surname: Deng
  fullname: Deng, Lin
  organization: School of Computer, National University of Defense Technology, Changsha, China
BookMark eNp1kF9LwzAUxYNMcJuCH6GPvnQmTZNmj1rmFOY_nO4xJGm6xXVNTVp0fno7JxNF4cK9D79zuOf0QKe0pQbgGMEBgjA6VZUeYETYHugigqMQUhx3dndED0DP-2cIEYIYdcHooam0K20misBXwnkdpAtbaL9cB7lQtXXmXdTGlkE7cyeqhVE-qJxV2ntTzoOmNLU_BPu5KLw--tp98HgxmqaX4eR2fJWeTUIVQ8pCQSlCGRWSCMRUpqlmkEqYUaYkhjKTeY4RwlJIqXJCqFYkR4kQCR6qOIMS98HJ1rd94KXRvuYr45UuClFq23iOaDTEFFPGvlHlrPdO57xyZiXcmiPIN03xtim-aapFB79QZerP0LUTpvhLEG4Fr6bQ63-NeXo3-skbX-u3HS_cktMEJ4TPbsb8Pp6R6fUT4-f4A4wVjG4
CitedBy_id crossref_primary_10_1155_2017_3021591
crossref_primary_10_1016_j_jocs_2024_102312
crossref_primary_10_1007_s11265_017_1227_9
Cites_doi 10.1137/0611010
10.1007/978-3-642-19328-6_9
10.1007/978-3-642-16405-7
10.1145/355791.355796
10.1137/S0895479895291765
10.1145/1391989.1391995
10.1145/356044.356047
10.1137/1034004
10.1145/77626.79170
10.1137/0614019
10.1109/IPDPS.2011.44
10.1145/355841.355847
10.1137/090757216
10.1137/1.9780898718881
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.3158
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage 2726
ExternalDocumentID 10_1002_cpe_3158
CPE3158
ark_67375_WNG_Q4W5TMV8_B
Genre article
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4068-a6611d6ab5a18cde6e806b0d68cb30bdbff3113babbcf556ec5f17aa739c4d0b3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343814500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Thu Oct 02 13:18:00 EDT 2025
Sat Nov 29 01:41:13 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Jan 22 16:35:13 EST 2025
Tue Nov 11 03:31:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4068-a6611d6ab5a18cde6e806b0d68cb30bdbff3113babbcf556ec5f17aa739c4d0b3
Notes istex:28E4EBE69BC931F153728A2B7ADE96B1B45BCDE2
ArticleID:CPE3158
ark:/67375/WNG-Q4W5TMV8-B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1629363688
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1629363688
crossref_primary_10_1002_cpe_3158
crossref_citationtrail_10_1002_cpe_3158
wiley_primary_10_1002_cpe_3158_CPE3158
istex_primary_ark_67375_WNG_Q4W5TMV8_B
PublicationCentury 2000
PublicationDate November 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November 2014
PublicationDecade 2010
PublicationTitle Concurrency and computation
PublicationTitleAlternate Concurrency Computat.: Pract. Exper
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Yuen DA, Wang L, Chi X, Johnsson L, Ge W, Shi Y. GPU Solutions to Multi-scale Problems in Science and Engineering. Springer: New York, USA, 2013.
Pissanetsky S. Sparse Matrix Technology. Academic Press: New York, 1984.
Dongarra JJ, Du Croz J, Hammarling S, Duff IS. A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software 1990; 16:1-17.
Hogg JD, Reid JK, Scott JA. Design of a multi-core sparse Cholesky factorization using DAGs. Proc. SIAM Journal on Scientific Computing 2010; 32(6):3627-3649.
Dongarra JJ, Bader DA, Kurzak J. Scientific Computing with Multi-Core and Accelerators. CRC Press Inc: Boca Raton, Florida, USA, 2010.
Chen Y, Davis TA, Hager WW, Rajamanickam S. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 2008; 35(3):1-14.
Liu JWH. The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11:134-172, 1990.
Fred G Gustavson. Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Transactions on Mathematical Software 1978; 4:250-269.
Duff IS, Reid JK. The multifrontal solution of indefinite sparse symmetric linear. ACM Transactions on Mathematical Software 1983; 9:302-325.
Li XS, Demmel JW, Eisenstat SC, Gilbert JR, Liu JWH. A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 1999; 20:720-755.
Liu JWH. The multifrontal method for sparse matrix solution: theory and practice. SIAM Review 1992; 34:82-109.
JWH Liu, Ng EG, Peyton BW. On finding supernodes for sparse matrix computations. SIAM Journal on Matrix Analysis and Applications 1993; 14:242-252.
Lawson, CL, Hanson, RJ, Kincaid, DR, Krogh, FT. Basic linear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software 1979; 5:308-323.
1993; 14
2010; 32
1990; 11
2012
2011
1990; 16
2010
1978; 4
1979; 5
2008
2007
2006
1984
1983; 9
2008; 35
1999; 20
2003
2013
1992; 34
1999
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Dongarra JJ (e_1_2_7_24_1) 2010
Pissanetsky S (e_1_2_7_6_1) 1984
Saule E (e_1_2_7_26_1) 2012
Dongarra JJ (e_1_2_7_18_1) 1990; 16
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: JWH Liu, Ng EG, Peyton BW. On finding supernodes for sparse matrix computations. SIAM Journal on Matrix Analysis and Applications 1993; 14:242-252.
– reference: Hogg JD, Reid JK, Scott JA. Design of a multi-core sparse Cholesky factorization using DAGs. Proc. SIAM Journal on Scientific Computing 2010; 32(6):3627-3649.
– reference: Duff IS, Reid JK. The multifrontal solution of indefinite sparse symmetric linear. ACM Transactions on Mathematical Software 1983; 9:302-325.
– reference: Liu JWH. The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11:134-172, 1990.
– reference: Li XS, Demmel JW, Eisenstat SC, Gilbert JR, Liu JWH. A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 1999; 20:720-755.
– reference: Dongarra JJ, Bader DA, Kurzak J. Scientific Computing with Multi-Core and Accelerators. CRC Press Inc: Boca Raton, Florida, USA, 2010.
– reference: Dongarra JJ, Du Croz J, Hammarling S, Duff IS. A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software 1990; 16:1-17.
– reference: Liu JWH. The multifrontal method for sparse matrix solution: theory and practice. SIAM Review 1992; 34:82-109.
– reference: Chen Y, Davis TA, Hager WW, Rajamanickam S. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 2008; 35(3):1-14.
– reference: Fred G Gustavson. Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Transactions on Mathematical Software 1978; 4:250-269.
– reference: Yuen DA, Wang L, Chi X, Johnsson L, Ge W, Shi Y. GPU Solutions to Multi-scale Problems in Science and Engineering. Springer: New York, USA, 2013.
– reference: Pissanetsky S. Sparse Matrix Technology. Academic Press: New York, 1984.
– reference: Lawson, CL, Hanson, RJ, Kincaid, DR, Krogh, FT. Basic linear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software 1979; 5:308-323.
– volume: 34
  start-page: 82
  year: 1992
  end-page: 109
  article-title: The multifrontal method for sparse matrix solution: theory and practice
  publication-title: SIAM Review
– year: 2011
– year: 1984
– volume: 4
  start-page: 250
  year: 1978
  end-page: 269
  article-title: Two fast algorithms for sparse matrices: multiplication and permuted transposition
  publication-title: ACM Transactions on Mathematical Software
– start-page: 1629
  year: 2012
  end-page: 1639
– volume: 35
  start-page: 1
  issue: 3
  year: 2008
  end-page: 14
  article-title: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate
  publication-title: ACM Transactions on Mathematical Software
– year: 2008
– year: 2007
– year: 2006
– year: 2003
– volume: 20
  start-page: 720
  year: 1999
  end-page: 755
  article-title: A supernodal approach to sparse partial pivoting
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 11
  start-page: 134
  year: 1990
  end-page: 172
  article-title: The role of elimination trees in sparse factorization
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 14
  start-page: 242
  year: 1993
  end-page: 252
  article-title: On finding supernodes for sparse matrix computations
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 16
  start-page: 1
  year: 1990
  end-page: 17
  article-title: A set of level 3 basic linear algebra subprograms
  publication-title: ACM Transactions on Mathematical Software
– volume: 9
  start-page: 302
  year: 1983
  end-page: 325
  article-title: The multifrontal solution of indefinite sparse symmetric linear
  publication-title: ACM Transactions on Mathematical Software
– volume: 32
  start-page: 3627
  issue: 6
  year: 2010
  end-page: 3649
  article-title: Design of a multi‐core sparse Cholesky factorization using DAGs
  publication-title: Proc. SIAM Journal on Scientific Computing
– volume: 5
  start-page: 308
  year: 1979
  end-page: 323
  article-title: Basic linear algebra subprograms for Fortran usage
  publication-title: ACM Transactions on Mathematical Software
– year: 2010
– year: 2012
– year: 1999
– year: 2013
– ident: e_1_2_7_20_1
– ident: e_1_2_7_4_1
  doi: 10.1137/0611010
– start-page: 1629
  volume-title: Proceedings IEEE International Parallel & Distributed Processing Symposium's Workshop on Multithreaded Architectures and Applications
  year: 2012
  ident: e_1_2_7_26_1
– ident: e_1_2_7_15_1
  doi: 10.1007/978-3-642-19328-6_9
– ident: e_1_2_7_25_1
  doi: 10.1007/978-3-642-16405-7
– ident: e_1_2_7_5_1
  doi: 10.1145/355791.355796
– ident: e_1_2_7_17_1
– ident: e_1_2_7_12_1
  doi: 10.1137/S0895479895291765
– volume-title: Sparse Matrix Technology
  year: 1984
  ident: e_1_2_7_6_1
– ident: e_1_2_7_23_1
  doi: 10.1145/1391989.1391995
– volume-title: Scientific Computing with Multi‐Core and Accelerators
  year: 2010
  ident: e_1_2_7_24_1
– ident: e_1_2_7_8_1
– ident: e_1_2_7_9_1
  doi: 10.1145/356044.356047
– ident: e_1_2_7_16_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_10_1
  doi: 10.1137/1034004
– ident: e_1_2_7_13_1
– ident: e_1_2_7_21_1
– volume: 16
  start-page: 1
  year: 1990
  ident: e_1_2_7_18_1
  article-title: A set of level 3 basic linear algebra subprograms
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/77626.79170
– ident: e_1_2_7_11_1
  doi: 10.1137/0614019
– ident: e_1_2_7_14_1
  doi: 10.1109/IPDPS.2011.44
– ident: e_1_2_7_19_1
– ident: e_1_2_7_7_1
  doi: 10.1145/355841.355847
– ident: e_1_2_7_22_1
  doi: 10.1137/090757216
– ident: e_1_2_7_3_1
  doi: 10.1137/1.9780898718881
SSID ssj0011031
Score 2.0336986
Snippet SUMMARY Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of...
Sparse Cholesky factorization is the most computationally intensive component in solving large sparse linear systems and is the core algorithm of numerous...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2713
SubjectTerms Algorithms
Cholesky factorization
Computation
Concurrency
GPU
Graphics processing units
Platforms
Solvers
sparse Cholesky factorization
supernodal method
Utilization
Title Supernodal sparse Cholesky factorization on graphics processing units
URI https://api.istex.fr/ark:/67375/WNG-Q4W5TMV8-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.3158
https://www.proquest.com/docview/1629363688
Volume 26
WOSCitedRecordID wos000343814500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-6-eCL8xPnFxVEn8qatsmyR52bPswxdXN7C0mawph0o91E_3sv_ZgOFASh0JdLWu5yuV8-7ncIXbgwZj0VKJuKwGzdhK7dUL62mStDTAmuC5HyzHbq3S4bjRq9_FalyYXJ-CGWG27GM9L52ji4kEntizRUzTQsOAlbR2WTUwULr_LtU3vQWZ4hmAIGGVuqazuA2wvqWcetFW1XglHZ6PV9BWl-x6tpwGlX_vOr22grh5nWdTYudtCajnZRpSjhYOUevYdaz4uZjqNpAMIwt8SJtpqmYm4y-bCyUjx5nqYFT0puPVaJNcuyCyDqWQuYEpJ9NGi3-s17O6-sYCsI4MwWEJVxQIUkAjMVaKqZQ6UTUKak58hAhqGHsSeFlCokhGpFwtRsHhgycKR3gErRNNKHyAqJSxijPhahYaKvS596WANoMAeaxHGq6KpQMVc57bipfvHKM8Jkl4N2uNFOFZ0vJWcZ1cYPMpeplZYCIp6Yq2l1wofdO_7oD0n_4YXxG-isMCMHhzGnICLS00XCMQWEQz3KTGep1X79Gm_2WuZ99FfBY7QJgMrPchVPUGkeL_Qp2lBv83ESn-UD9BOa2emj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xdtJ4odvYtPKxBWkaTxFxEjuueILSjolQsVEGb5btOBICpVXSIvjvOeeLITFp0qRIebk40Z3P98vZ9zuArz7O2UAn2mUysamb1HcHOjQu91VKGCWRlCXPbBxNJvzqanC2AvtNLUzFD9Em3KxnlOu1dXCbkN57Yg3Vc4N_nJS_gm7Igoh3oHv0a3wRt5sItoNBRZfqux4C94Z71vP3mmefRaOuVez9M6j5J2AtI86491_f-hbWaqDpHFQz4x2smOw99JomDk7t0-swOl_OTZ7NEhTG1SUvjDO0PXOLmwenasZTV2o6eJX01te6cOZVfQHGPWeJi0LxAS7Go-nw2K17K7gaQzh3JcZlkjCpqCRcJ4YZ7jHlJYxrFXgqUWkaEBIoqZROKWVG07Q0XICmTDwVfIRONsvMJ3BS6lPOWUhkarnoI4XWIAZhg93SpJ7Xh91Gx0LXxOO2_8WtqCiTfYHaEVY7fdhpJecV2cYLMt9KM7UCMr-xh9MiKi4n38XP8JJOT39zcYiDNXYU6DJ2H0RmZrYsBGGIcVjAuB2sNNtf3yaGZyN73_hXwS_w5nh6Gov4x-RkE1YRXoVV5eIWdBb50mzDa323uC7yz_VsfQSXdO2T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0Tkpfqv2QWrWmUNqnYDbJ7u3hk553Kr0eZ6vVt2U_QSy5kHhF_3tn83FWqFAQAnmZbMLMzs4vOzu_Afgc45xNtNEhk8Zv3bg47OvUhjxWjjBKelJWPLPj3mTCLy_70yXYa2than6IxYab94xqvfYObnPjdh9YQ3Vu8Y-T8mXoprRP0w50D3-MzseLJILvYFDTpcZhhMC95Z6N4t322UfRqOsVe_sIav4NWKuIM1p91reuwasGaAb79cx4DUs2ewOrbROHoPHptzD8Oc9tkc0MCuPqUpQ2GPieueX1XVA342kqNQO8KnrrK10GeV1fgHEvmOOiUL6D89HwbHAcNr0VQo0hnIcS4zIxTCoqCdfGMssjpiLDuFZJpIxyLiEkUVIp7ShlVlNXGS5BU5pIJevQyWaZfQ-BozHlnKVEOs9F31MpS4hF2OBTmjSKNuBrq2OhG-Jx3__it6gpk2OB2hFeOxvwaSGZ12Qb_5D5UplpISCLa384rUfFxeRInKYX9Oz7Ly4OcLDWjgJdxudBZGZn81IQhhiHJYz7wSqzPfk2MZgO_f3D_wruwIvp4UiMTybfNuEloqu0Llzcgs5NMbfbsKL_3FyVxcdmst4DPmrtDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supernodal+sparse+Cholesky+factorization+on+graphics+processing+units&rft.jtitle=Concurrency+and+computation&rft.au=Zou%2C+Dan&rft.au=Dou%2C+Yong&rft.au=Guo%2C+Song&rft.au=Li%2C+Rongchun&rft.date=2014-11-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=26&rft.issue=16&rft.spage=2713&rft.epage=2726&rft_id=info:doi/10.1002%2Fcpe.3158&rft.externalDBID=10.1002%252Fcpe.3158&rft.externalDocID=CPE3158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon