Lyapunov exponents computation for hybrid neurons

Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational neuroscience Ročník 35; číslo 2; s. 201 - 212
Hlavní autoři: Bizzarri, Federico, Brambilla, Angelo, Storti Gajani, Giancarlo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.10.2013
Springer Nature B.V
Témata:
ISSN:0929-5313, 1573-6873, 1573-6873
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0929-5313
1573-6873
1573-6873
DOI:10.1007/s10827-013-0448-6