Density by moduli and statistical convergence
By using modulus functions we introduce a new concept of density for sets of natural numbers. Consequently, we obtain a generalization of the notion of statistical convergence which is studied and characterized. As an application, we prove that the ordinary convergence is equivalent to the module st...
Uložené v:
| Vydané v: | Quaestiones mathematicae Ročník 37; číslo 4; s. 525 - 530 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Grahamstown
Taylor & Francis
01.01.2014
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1607-3606, 1727-933X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | By using modulus functions we introduce a new concept of density for sets of natural numbers. Consequently, we obtain a generalization of the notion of statistical convergence which is studied and characterized. As an application, we prove that the ordinary convergence is equivalent to the module statistical conver- gence for every unbounded modulus function. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1607-3606 1727-933X |
| DOI: | 10.2989/16073606.2014.981683 |