EXTENDING THE LEE–CARTER MODEL WITH VARIATIONAL AUTOENCODER: A FUSION OF NEURAL NETWORK AND BAYESIAN APPROACH

In this study, we propose a nonlinear Bayesian extension of the Lee–Carter (LC) model using a single-stage procedure with a dimensionality reduction neural network (NN). LC is originally estimated using a two-stage procedure: dimensionality reduction of data by singular value decomposition followed...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ASTIN Bulletin : The Journal of the IAA Ročník 52; číslo 3; s. 789 - 812
Hlavní autori: Miyata, Akihiro, Matsuyama, Naoki
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, USA Cambridge University Press 01.09.2022
Predmet:
ISSN:0515-0361, 1783-1350
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, we propose a nonlinear Bayesian extension of the Lee–Carter (LC) model using a single-stage procedure with a dimensionality reduction neural network (NN). LC is originally estimated using a two-stage procedure: dimensionality reduction of data by singular value decomposition followed by a time series model fitting. To address the limitations of LC, which are attributed to the two-stage estimation and insufficient model fitness to data, single-stage procedures using the Bayesian state-space (BSS) approaches and extensions of flexibility in modeling by NNs have been proposed. As a fusion of these two approaches, we propose a NN extension of LC with a variational autoencoder that performs the variational Bayesian estimation of a state-space model and dimensionality reduction by autoencoding. Despite being a NN model that performs single-stage estimation of parameters, our model has excellent interpretability and the ability to forecast with confidence intervals, as with the BSS models, without using Markov chain Monte Carlo methods.
AbstractList In this study, we propose a nonlinear Bayesian extension of the Lee–Carter (LC) model using a single-stage procedure with a dimensionality reduction neural network (NN). LC is originally estimated using a two-stage procedure: dimensionality reduction of data by singular value decomposition followed by a time series model fitting. To address the limitations of LC, which are attributed to the two-stage estimation and insufficient model fitness to data, single-stage procedures using the Bayesian state-space (BSS) approaches and extensions of flexibility in modeling by NNs have been proposed. As a fusion of these two approaches, we propose a NN extension of LC with a variational autoencoder that performs the variational Bayesian estimation of a state-space model and dimensionality reduction by autoencoding. Despite being a NN model that performs single-stage estimation of parameters, our model has excellent interpretability and the ability to forecast with confidence intervals, as with the BSS models, without using Markov chain Monte Carlo methods.
Author Miyata, Akihiro
Matsuyama, Naoki
Author_xml – sequence: 1
  givenname: Akihiro
  surname: Miyata
  fullname: Miyata, Akihiro
  organization: Graduate Student at AMS Meiji University Tokyo, Japan
– sequence: 2
  givenname: Naoki
  surname: Matsuyama
  fullname: Matsuyama, Naoki
  email: ma2yama@meiji.ac.jp
  organization: Graduate School of Advanced Mathematical Sciences (AMS) Meiji University Tokyo, Japan E-mail: ma2yama@meiji.ac.jp
BookMark eNp1kMFOg0AURSemJtbqyh-YxKWhzgwM03E30mlLRGgotboiAwyGpi0V6MKd_-Af-iXStImJ0dVL3j33vZt7DjqbcqMBuMKojxFmt6pO-gQR0sf0BHQxG5gGNinqgC6imBrItPEZOK_rJUImHhDSBaV8jqQ_dP0xjCYSelJ-fXw6IoxkCB-DofTgwo0m8EmErojcwBceFPMokL7TiuEdFHA0n7V7GIygL-dhq_syWgThAxT-EN6LFzlzhQ_FdBoGwplcgNNcrWp9eZw9MB_JyJkYXjB2HeEZqYVoY5CcWblFM8S5yjLONFOUmznFCUtslNsk49pkdp7amjFOOE8HOrO0Ta3EVHyQmj1wfbi7rcq3na6beFnuqk37MiaMWdwiFNktdXOg0qqs60rn8bYq1qp6jzGK943GbaPxvtEY05bGv-i0aFRTlJumUsXqH49x9Kh1UhXZq_4J8hf_DYX7gXY
CitedBy_id crossref_primary_10_1017_asb_2024_38
crossref_primary_10_1057_s41288_024_00320_5
crossref_primary_10_1057_s41288_024_00321_4
crossref_primary_10_1080_03461238_2024_2307620
crossref_primary_10_3390_risks13080151
crossref_primary_10_1007_s11135_023_01705_9
Cites_doi 10.1017/asb.2021.13
10.3390/risks7010033
10.1017/S1748499519000071
10.1017/asb.2021.34
10.1017/S1748499517000069
10.1093/biostatistics/kxj024
10.1080/10920277.2009.10597538
10.1080/03461238.2020.1867232
10.1007/BF02551274
10.2139/ssrn.3822407
10.1017/asb.2017.45
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press on behalf of The International Actuarial Association
The Author(s), 2022. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The International Actuarial Association
– notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7X1
7XB
8A9
8FK
ABUWG
AFKRA
ANIOZ
BENPR
BEZIV
CCPQU
DWQXO
FRAZJ
FRNLG
K60
K6~
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1017/asb.2022.15
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Accounting, Tax & Banking Collection
ProQuest Central (purchase pre-March 2016)
Accounting & Tax Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Accounting, Tax & Banking Collection
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
Accounting, Tax & Banking Collection (Alumni)
Business Premium Collection (Alumni)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Business Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Business Collection
Accounting & Tax
ProQuest Central
Accounting, Tax & Banking Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Business (Alumni)
Accounting, Tax & Banking Collection (Alumni)
Accounting & Tax (Alumni Edition)
ProQuest One Academic
ProQuest Central (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Business Premium Collection

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1783-1350
EndPage 812
ExternalDocumentID 10_1017_asb_2022_15
GroupedDBID 09C
09D
09E
0E1
0R~
23N
4.4
5GY
5VS
8I0
AAAZR
AABES
AABWE
AACJH
AADNG
AAFWJ
AAGFV
AAKTX
AALKF
AANRG
AAOIO
AAPYI
AARAB
AASVR
AAUKB
ABBXD
ABBZL
ABGDZ
ABJNI
ABJWI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABTND
ABUWG
ABXAU
ABYPY
ABZCX
ACABY
ACBMC
ACCHT
ACETC
ACFCP
ACGFS
ACHQT
ACIMK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACYZP
ACZBM
ACZBN
ACZUX
ACZWT
ADBZK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADTCA
ADVJH
AEBAK
AEBPU
AEFOJ
AEHGV
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKRZ
AFLOS
AFLVW
AGABE
AGHGI
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
ANFVQ
ANIOZ
AOWSX
AQJOH
ARZZG
ATUCA
AUXHV
AVDNQ
AWRMI
AWSUU
AYIQA
BBLKV
BBQHK
BCGOX
BENPR
BESQT
BEZIV
BGHMG
BJBOZ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CFLAC
CGMFO
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
ED0
EGQIC
EJD
FRNLG
GDOGT
HG-
HOVLH
HZ~
I.5
I.6
I.7
IH6
IKXGN
IOEEP
IOO
IS6
I~P
JHPGK
JOSPZ
JPPIE
JQKCU
JRMXA
KAFGG
KCGVB
KFECR
LHUNA
LW7
M-V
M7~
MS~
NIKVX
NZEOI
O9-
OK1
PQBIZ
RAMDC
RCA
ROL
RR0
RWP
S6-
S6U
SAAAG
SJN
T9M
TR2
UT1
WFFJZ
ZJOSE
ZMEZD
ZYDXJ
~A4
AAXMD
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
AFFHD
AFZFC
AGTDA
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQBZA
3V.
7X1
7XB
8A9
8FK
K60
K6~
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c405t-2f74f45d099add97e7a593f51b7b60f62d9e376fc6e779299c8ed4e654b3a98c3
IEDL.DBID BENPR
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852884700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0515-0361
IngestDate Mon Jun 30 13:39:11 EDT 2025
Sat Nov 29 01:43:22 EST 2025
Tue Nov 18 21:00:38 EST 2025
Wed Mar 13 05:54:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords state-space model
Lee–Carter model
variational Bayesian inference
variational autoencoder
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-2f74f45d099add97e7a593f51b7b60f62d9e376fc6e779299c8ed4e654b3a98c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0515036122000150/type/journal_article
PQID 2774942506
PQPubID 5514772
PageCount 24
ParticipantIDs proquest_journals_2774942506
crossref_primary_10_1017_asb_2022_15
crossref_citationtrail_10_1017_asb_2022_15
cambridge_journals_10_1017_asb_2022_15
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cambridge
PublicationTitle ASTIN Bulletin : The Journal of the IAA
PublicationTitleAlternate ASTIN Bull
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1989; 2
2019; 7
2021; 7
2009; 13
2021; 15
2006; 73
2010; 46
2002; 31
2017; 11
2006; 38
2006; 7
2011; 41
1992; 87
2021; 52
2021; 51
2018; 48
2005; 36
Lee (S0515036122000150_ref11) 1992; 87
Cairns (S0515036122000150_ref4) 2011; 41
Cairns (S0515036122000150_ref2) 2006; 73
Czado (S0515036122000150_ref6) 2005; 36
S0515036122000150_ref3
S0515036122000150_ref19
S0515036122000150_ref18
S0515036122000150_ref5
Brouhns (S0515036122000150_ref1) 2002; 31
S0515036122000150_ref17
S0515036122000150_ref7
S0515036122000150_ref9
S0515036122000150_ref8
Renshaw (S0515036122000150_ref16) 2006; 38
S0515036122000150_ref20
S0515036122000150_ref15
S0515036122000150_ref14
Kogure (S0515036122000150_ref10) 2010; 46
S0515036122000150_ref13
Lecun (S0515036122000150_ref12) 1990
References_xml – volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals and Systems
– volume: 7
  start-page: 33
  issue: 1
  year: 2019
  article-title: A deep learning integrated Lee–Carter model
  publication-title: Risks
– volume: 7
  start-page: 572
  year: 2021
  end-page: 598
  article-title: Time-series forecasting of mortality rates using deep learning
  publication-title: Scandinavian Actuarial Journal
– volume: 46
  start-page: 162
  issue: 1
  year: 2010
  end-page: 172
  article-title: A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions
  publication-title: Insurance: Mathematics and Economics
– volume: 11
  start-page: 343
  issue: 2
  year: 2017
  end-page: 389
  article-title: A unified approach to mortality modelling using state-space framework: Characterisation, identification, estimation and forecasting
  publication-title: Annals of Actuarial Science
– volume: 41
  start-page: 25
  issue: 1
  year: 2011
  end-page: 59
  article-title: Bayesian stochastic mortality modelling for two populations
  publication-title: ASTIN Bulletin
– volume: 51
  start-page: 689
  issue: 3
  year: 2021
  end-page: 718
  article-title: Neighbouring prediction for mortality
  publication-title: ASTIN Bulletin
– volume: 36
  start-page: 260
  issue: 3
  year: 2005
  end-page: 284
  article-title: Bayesian Poisson log–bilinear mortality projections
  publication-title: Insurance: Mathematics and Economics
– volume: 31
  start-page: 373
  issue: 3
  year: 2002
  end-page: 393
  article-title: A Poisson log-bilinear regression approach to the construction of projected lifetables
  publication-title: Insurance: Mathematics and Economics
– volume: 87
  start-page: 659
  issue: 419
  year: 1992
  end-page: 671
  article-title: Modeling and forecasting US mortality
  publication-title: Journal of the American statistical association
– volume: 73
  start-page: 687
  issue: 4
  year: 2006
  end-page: 718
  article-title: A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration
  publication-title: North American Actuarial Journal of Risk and Insurance
– volume: 38
  start-page: 556
  issue: 3
  year: 2006
  end-page: 570
  article-title: A cohort-based extension to the Lee-Carter model for mortality reduction factors
  publication-title: Insurance: Mathematics and Economics
– volume: 48
  start-page: 481
  issue: 2
  year: 2018
  end-page: 508
  article-title: A neural-network analyzer for mortality forecast
  publication-title: ASTIN Bulletin
– volume: 13
  start-page: 1
  issue: 1
  year: 2009
  end-page: 53
  article-title: A quantitative comparison of stochastic mortality models using data from England and Wales and the United States
  publication-title: North American Actuarial Journal
– volume: 15
  start-page: 346
  issue: 2
  year: 2021
  end-page: 366
  article-title: A neural network extension of the Lee–Carter model to multiple populations
  publication-title: Annals of Actuarial Science
– volume: 52
  start-page: 333
  issue: 1
  year: 2021
  end-page: 360
  article-title: Point and interval forecast of death rates using neural networks
  publication-title: ASTIN Bulletin
– volume: 7
  start-page: 530
  year: 2006
  end-page: 550
  article-title: A Bayesian forecasting model: Predicting U.S. male mortality
  publication-title: Biostatistics
– volume: 36
  start-page: 260
  year: 2005
  ident: S0515036122000150_ref6
  article-title: Bayesian Poisson log–bilinear mortality projections
  publication-title: Insurance: Mathematics and Economics
– ident: S0515036122000150_ref19
  doi: 10.1017/asb.2021.13
– ident: S0515036122000150_ref13
  doi: 10.3390/risks7010033
– ident: S0515036122000150_ref17
  doi: 10.1017/S1748499519000071
– start-page: 396
  volume-title: Neural Information Processing Systems 2
  year: 1990
  ident: S0515036122000150_ref12
– volume: 73
  start-page: 687
  year: 2006
  ident: S0515036122000150_ref2
  article-title: A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration
  publication-title: North American Actuarial Journal of Risk and Insurance
– ident: S0515036122000150_ref18
  doi: 10.1017/asb.2021.34
– ident: S0515036122000150_ref7
  doi: 10.1017/S1748499517000069
– volume: 87
  start-page: 659
  year: 1992
  ident: S0515036122000150_ref11
  article-title: Modeling and forecasting US mortality
  publication-title: Journal of the American statistical association
– volume: 46
  start-page: 162
  year: 2010
  ident: S0515036122000150_ref10
  article-title: A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions
  publication-title: Insurance: Mathematics and Economics
– ident: S0515036122000150_ref14
  doi: 10.1093/biostatistics/kxj024
– volume: 31
  start-page: 373
  year: 2002
  ident: S0515036122000150_ref1
  article-title: A Poisson log-bilinear regression approach to the construction of projected lifetables
  publication-title: Insurance: Mathematics and Economics
– ident: S0515036122000150_ref3
  doi: 10.1080/10920277.2009.10597538
– volume: 41
  start-page: 25
  year: 2011
  ident: S0515036122000150_ref4
  article-title: Bayesian stochastic mortality modelling for two populations
  publication-title: ASTIN Bulletin
– volume: 38
  start-page: 556
  year: 2006
  ident: S0515036122000150_ref16
  article-title: A cohort-based extension to the Lee-Carter model for mortality reduction factors
  publication-title: Insurance: Mathematics and Economics
– ident: S0515036122000150_ref9
– ident: S0515036122000150_ref15
  doi: 10.1080/03461238.2020.1867232
– ident: S0515036122000150_ref5
  doi: 10.1007/BF02551274
– ident: S0515036122000150_ref20
  doi: 10.2139/ssrn.3822407
– ident: S0515036122000150_ref8
  doi: 10.1017/asb.2017.45
SSID ssj0031822
Score 2.31429
Snippet In this study, we propose a nonlinear Bayesian extension of the Lee–Carter (LC) model using a single-stage procedure with a dimensionality reduction neural...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 789
SubjectTerms Accuracy
Actuarial science
Age
Approximation
Confidence intervals
Mortality
Neural networks
Neurons
Time series
SummonAdditionalLinks – databaseName: Cambridge University Press Wholly Gold Open Access Journals
  dbid: IKXGN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb5swFLa6dpp22bpfWruu8qHqoRJLYjCG3ljiNKiZiShZ2QlhsKVKVVol2c77H_of7i_ZM5hUlXropReEsGXAz_78gd_7HkJHLtVeExwTMLd0vIHUMKXgULueJkQakaUma8mUCRHkeTjbQnkXC2PcKjcaB81OfpMf7baVP-1d1a0PjVr2Lkx2EsDfASFNQHC_Z35a9qwJCtvxL9AOMBgCU3YnPs_PRIfSMJTbHQZoxDGt2Ng9IyddriR8OBLyzeTKvVdceLhyPQTuZjUav32-99hFbyxDxVF75R3aUov36FXnIP8B3fA842IUizOcTTiecv7v792w4cX4RzLiU3wZZxP8M0pjq7SLYRIkXAyhMD3FER7PDYLjZIwFn6dQLnh2maTnOBIj_D36xS_iSOBoNkuTaDj5iOZjng0njk3b4FTA_tYO0czTHq2BewJ4hkyxkoaupgPJpN_XPqlDBbCmK18xBuwsrAJVe8qnnnTLMKjcT2h7cbNQnxH2S-WW1AWWVisPqI4MqGRgGUk0Dfwy3EPHm04ubI-titZxjRVgx8LYsRjQPXTS2a6orPi5ycFx_Xjlo03l21bz4_FqB90guL83ATodAg72_f2nPtsX9NqctY5rB2h7vfytvqKX1Z_11Wp5aMftf2VB9Rk
  priority: 102
  providerName: Cambridge University Press
Title EXTENDING THE LEE–CARTER MODEL WITH VARIATIONAL AUTOENCODER: A FUSION OF NEURAL NETWORK AND BAYESIAN APPROACH
URI https://www.cambridge.org/core/product/identifier/S0515036122000150/type/journal_article
https://www.proquest.com/docview/2774942506
Volume 52
WOSCitedRecordID wos000852884700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Accounting, Tax & Banking Collection
  customDbUrl:
  eissn: 1783-1350
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0031822
  issn: 0515-0361
  databaseCode: ANIOZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/accountingtaxbanking
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1783-1350
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0031822
  issn: 0515-0361
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYYnaZdGPuBxsaQD2gHpGw0ieNkl8m0Lo0oTpWlo3CJ4sSWkFDLaOHM_7D_cH_JnhOHCglx4ZIc_JREfs-fv9jP30NozyParw_HhNQrHL8rNQwpuFSer11XGpGlumrJiAoRTqfR2C64LWxaZYuJNVBX89KskX93gadEEGAHwc-rP46pGmV2V20JjReoY5TKIM47h1yM0xaLIWCbfQSYtR3A6q49oWdEo4uFhN9D1_1mKuKudBUezk8P4bmecwZvnvu1m2jDsk3MmvB4i9bU7B161Sa7v0dzPs246MfiCGdDjkec_7v726s5Lj5J-nyET-NsiH-zNLaquRgCOuGiB43pD8zwYGLQGCcDLPgkhXbBs9MkPcZM9PEhO-O_YiYwG4_ThPWGH9BkwLPe0LElGJwSmNzScTX1tU8q4JEAhBFVtCCRp0lXUhkc6MCtIgUQpctAUQpMKypDVfkqIL70iigsvS20PpvP1EeEg0J5BfGAcVXKB9oiQyIp9L90NQmDItpGX--dkNuBtMibJDSag7dy4628S7bRfuuhvLRC5qaexuXjxnv3xleNfsfjZjutH1fvXjnx09PNn9Fr85wm9WwHrS-vb9QX9LK8XV4srndRh4k4Od-1sQn3-Hh6JP4DeeHj3w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLYJe-Ee0FPChcEAKdJ04TpAQCrteEm3qrEKWLlxCfhypUrVbuguIG-_Ae_BQPAnj_HRVqeLWA5dcxrKV-JuZb-LxDMCeySqrvhzjcDMzrH5eoUrhozStitJcF1mqu5aEXEpnNnMnG_C7uwuj0yo7m1gb6nJR6H_kLynyFBcBtm-_Ofli6K5R-nS1a6HRwGKsfnzHkG35Ohji_j6ldCSSgW-0XQWMAsnJyqAVtyqLlUiNULddrnjGXLNi_Zzn9n5l09JVqHVVYSvOkTy4haNKS9nMys3MdQoT570Cm5aJkVEPNj0ZRJ86248K0pxbIEsw0Df02xuBukh1tswxHKX0he7Au67jcN4fnncHtY8b3fzfvs4tuNGyaeI18L8NG2p-B651yfx3YSFmiZDDQL4jiS9IKMSfn78GNYcnB9FQhOQwSHzywYuDtiowQYWNhBygMH5FPDKaam9DohGRYhqjXIrkMIrHxJND8tb7KN4HniTeZBJH3sC_B9NLed370Jsv5uoBEDtTZsZMZJSlspCW5Q7LOe53Tivm2Jm7Dc_ONj1tDcUybZLseIroSDU60j7bhucdItKiLdSu-4UcXzx472zwSVOf5OJhux1u1muvQbPzb_ETuO4nB2EaBnL8ELb0nE2a3S70Vqdf1SO4WnxbHS1PH7f6QODzZYPsL3dqPgI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU1Sx4Y0oLeBFYYEU2nEeTpAQSicOE83gjEKGDmxCHraEhGZKZwpixz_wN3wOX9LrPDqqVLHrgk02thwlPsf32L4PgD3TVlYdHOMyMzesfqGQUvioTEtRWugkS3XVkjETwp3NvMkG_OliYbRbZbcm1gt1tSj1Gfk-RZ3iIcAOnH3VukVMgvDN8TdDV5DSN61dOY0GIiP58wdu35avowDn-hmlIU8HQ6OtMGCUKFRWBlXMUpZdoUxCnntMstz2TGX3C1Y4B8qhlSeRgap0JGMoJLzSlZUlHdsqzNxzSxPHvQabOiOM1YNNX0Txp84OIFmaOwxUDAbaiX4bHagTVufLAremlL7U1XjXOR0u2saLpqG2d-Gt__lP3YabrcomfkOLO7Ah53dhq3PyvwcLPku5CCLxlqRDTsac__31e1Bre_IuDviYHEXpkHzwk6jNFkyQyDEXA2xMXhGfhFNthUgcEsGnCbYLnh7FyYj4IiCH_kf-PvIF8SeTJPYHw_swvZLPfQC9-WIuHwJxcmnmtolKs5IWyrXCtQuGc19QZbtO7m3D83MAZO0Csswa5zuWIVIyjZSsb2_Diw4dWdkmcNd1RL5e3nnvvPNxk7fk8m67HYbW714D6NG_m5_CFiIrG0ditAM3qD6JqKM0d6G3OjmVj-F6-X31ZXnypKUGgc9XjbEzbhdGvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXTENDING+THE+LEE%E2%80%93CARTER+MODEL+WITH+VARIATIONAL+AUTOENCODER%3A+A+FUSION+OF+NEURAL+NETWORK+AND+BAYESIAN+APPROACH&rft.jtitle=ASTIN+Bulletin+%3A+The+Journal+of+the+IAA&rft.au=Miyata%2C+Akihiro&rft.au=Matsuyama%2C+Naoki&rft.date=2022-09-01&rft.pub=Cambridge+University+Press&rft.issn=0515-0361&rft.eissn=1783-1350&rft.volume=52&rft.issue=3&rft.spage=789&rft.epage=812&rft_id=info:doi/10.1017%2Fasb.2022.15&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0515-0361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0515-0361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0515-0361&client=summon