EXTENDING THE LEE–CARTER MODEL WITH VARIATIONAL AUTOENCODER: A FUSION OF NEURAL NETWORK AND BAYESIAN APPROACH
In this study, we propose a nonlinear Bayesian extension of the Lee–Carter (LC) model using a single-stage procedure with a dimensionality reduction neural network (NN). LC is originally estimated using a two-stage procedure: dimensionality reduction of data by singular value decomposition followed...
Uloženo v:
| Vydáno v: | ASTIN Bulletin : The Journal of the IAA Ročník 52; číslo 3; s. 789 - 812 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, USA
Cambridge University Press
01.09.2022
|
| Témata: | |
| ISSN: | 0515-0361, 1783-1350 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this study, we propose a nonlinear Bayesian extension of the Lee–Carter (LC) model using a single-stage procedure with a dimensionality reduction neural network (NN). LC is originally estimated using a two-stage procedure: dimensionality reduction of data by singular value decomposition followed by a time series model fitting. To address the limitations of LC, which are attributed to the two-stage estimation and insufficient model fitness to data, single-stage procedures using the Bayesian state-space (BSS) approaches and extensions of flexibility in modeling by NNs have been proposed. As a fusion of these two approaches, we propose a NN extension of LC with a variational autoencoder that performs the variational Bayesian estimation of a state-space model and dimensionality reduction by autoencoding. Despite being a NN model that performs single-stage estimation of parameters, our model has excellent interpretability and the ability to forecast with confidence intervals, as with the BSS models, without using Markov chain Monte Carlo methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0515-0361 1783-1350 |
| DOI: | 10.1017/asb.2022.15 |