MaOAOA: A Novel Many‐Objective Arithmetic Optimization Algorithm for Solving Engineering Problems
ABSTRACT Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective optimization problems (MOPs). However, this reduces their efficiency when addressing MaOPs, which are problems that contain more than three...
Saved in:
| Published in: | Engineering reports (Hoboken, N.J.) Vol. 7; no. 3 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2025
Wiley |
| Subjects: | |
| ISSN: | 2577-8196, 2577-8196 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT
Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective optimization problems (MOPs). However, this reduces their efficiency when addressing MaOPs, which are problems that contain more than three objectives; this is because the portion of the Pareto frontier solutions tends to increase exponentially with the number of objectives. This paper aims at overcoming this problem by proposing a new Many‐Objective Arithmetic Optimization Algorithm (MaOAOA) that incorporates a reference point, niche preservation, and an information feedback mechanism (IFM). They did this in a manner that splits the convergence and the diversity phases in the middle of the cycle. The first phase deals with the convergence using a reference point approach, which aims to move the population towards the true Pareto Front. However, the diversity phase of the MaOAOA uses a niche preserve to the archive truncation method in the population, thus guaranteeing that the population is spread out properly along the actual Pareto front. These stages are mutual; that is, the convergence stage supports the diversity stage, and they are balanced by an (IFM) approach. The experimental results show that MaOAOA outperforms several approaches, including MaOTLBO, NSGA‐III, MaOPSO, and MOEA/D‐DRW, in terms of GD, IGD, SP, SD, HV, and RT metrics. This can be seen from the MaF1‐MaF15 test problems, especially with four, seven, and nine objectives, and five real‐world problems that include RWMaOP1 to RWMaOP5. The findings indicate that MaOAOA outperforms the other algorithms in most of the test cases analyzed in this study.
MaOAOA introduces an innovative many‐objective optimization framework combining an Information Feedback Mechanism, reference point‐based selection, and niche preservation strategies. Its effectiveness surpasses leading algorithms in convergence, diversity, and computational efficiency across benchmark and real‐world engineering problems, establishing it as a robust solution for high‐dimensional optimization challenges. |
|---|---|
| AbstractList | ABSTRACT
Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective optimization problems (MOPs). However, this reduces their efficiency when addressing MaOPs, which are problems that contain more than three objectives; this is because the portion of the Pareto frontier solutions tends to increase exponentially with the number of objectives. This paper aims at overcoming this problem by proposing a new Many‐Objective Arithmetic Optimization Algorithm (MaOAOA) that incorporates a reference point, niche preservation, and an information feedback mechanism (IFM). They did this in a manner that splits the convergence and the diversity phases in the middle of the cycle. The first phase deals with the convergence using a reference point approach, which aims to move the population towards the true Pareto Front. However, the diversity phase of the MaOAOA uses a niche preserve to the archive truncation method in the population, thus guaranteeing that the population is spread out properly along the actual Pareto front. These stages are mutual; that is, the convergence stage supports the diversity stage, and they are balanced by an (IFM) approach. The experimental results show that MaOAOA outperforms several approaches, including MaOTLBO, NSGA‐III, MaOPSO, and MOEA/D‐DRW, in terms of GD, IGD, SP, SD, HV, and RT metrics. This can be seen from the MaF1‐MaF15 test problems, especially with four, seven, and nine objectives, and five real‐world problems that include RWMaOP1 to RWMaOP5. The findings indicate that MaOAOA outperforms the other algorithms in most of the test cases analyzed in this study.
MaOAOA introduces an innovative many‐objective optimization framework combining an Information Feedback Mechanism, reference point‐based selection, and niche preservation strategies. Its effectiveness surpasses leading algorithms in convergence, diversity, and computational efficiency across benchmark and real‐world engineering problems, establishing it as a robust solution for high‐dimensional optimization challenges. Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective optimization problems (MOPs). However, this reduces their efficiency when addressing MaOPs, which are problems that contain more than three objectives; this is because the portion of the Pareto frontier solutions tends to increase exponentially with the number of objectives. This paper aims at overcoming this problem by proposing a new Many‐Objective Arithmetic Optimization Algorithm (MaOAOA) that incorporates a reference point, niche preservation, and an information feedback mechanism (IFM). They did this in a manner that splits the convergence and the diversity phases in the middle of the cycle. The first phase deals with the convergence using a reference point approach, which aims to move the population towards the true Pareto Front. However, the diversity phase of the MaOAOA uses a niche preserve to the archive truncation method in the population, thus guaranteeing that the population is spread out properly along the actual Pareto front. These stages are mutual; that is, the convergence stage supports the diversity stage, and they are balanced by an (IFM) approach. The experimental results show that MaOAOA outperforms several approaches, including MaOTLBO, NSGA‐III, MaOPSO, and MOEA/D‐DRW, in terms of GD, IGD, SP, SD, HV, and RT metrics. This can be seen from the MaF1‐MaF15 test problems, especially with four, seven, and nine objectives, and five real‐world problems that include RWMaOP1 to RWMaOP5. The findings indicate that MaOAOA outperforms the other algorithms in most of the test cases analyzed in this study. ABSTRACT Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective optimization problems (MOPs). However, this reduces their efficiency when addressing MaOPs, which are problems that contain more than three objectives; this is because the portion of the Pareto frontier solutions tends to increase exponentially with the number of objectives. This paper aims at overcoming this problem by proposing a new Many‐Objective Arithmetic Optimization Algorithm (MaOAOA) that incorporates a reference point, niche preservation, and an information feedback mechanism (IFM). They did this in a manner that splits the convergence and the diversity phases in the middle of the cycle. The first phase deals with the convergence using a reference point approach, which aims to move the population towards the true Pareto Front. However, the diversity phase of the MaOAOA uses a niche preserve to the archive truncation method in the population, thus guaranteeing that the population is spread out properly along the actual Pareto front. These stages are mutual; that is, the convergence stage supports the diversity stage, and they are balanced by an (IFM) approach. The experimental results show that MaOAOA outperforms several approaches, including MaOTLBO, NSGA‐III, MaOPSO, and MOEA/D‐DRW, in terms of GD, IGD, SP, SD, HV, and RT metrics. This can be seen from the MaF1‐MaF15 test problems, especially with four, seven, and nine objectives, and five real‐world problems that include RWMaOP1 to RWMaOP5. The findings indicate that MaOAOA outperforms the other algorithms in most of the test cases analyzed in this study. |
| Author | Khishe, Mohammad Jangir, Pradeep Trivedi, Bhargavi Indrajit Arpita Pandya, Sundaram B. G., Gulothungan |
| Author_xml | – sequence: 1 givenname: Pradeep surname: Jangir fullname: Jangir, Pradeep organization: Applied Science Private University – sequence: 2 surname: Arpita fullname: Arpita organization: Saveetha Institute of Medical and Technical Sciences – sequence: 3 givenname: Sundaram B. surname: Pandya fullname: Pandya, Sundaram B. organization: Shri K.J. Polytechnic – sequence: 4 givenname: Gulothungan surname: G. fullname: G., Gulothungan email: g.gulothungan@gmail.com organization: SRM Institute of Science and Technology – sequence: 5 givenname: Mohammad orcidid: 0000-0002-1024-8822 surname: Khishe fullname: Khishe, Mohammad email: m_khishe@alumni.iust.ac.ir organization: Jadara University – sequence: 6 givenname: Bhargavi Indrajit surname: Trivedi fullname: Trivedi, Bhargavi Indrajit organization: Vishwakarma Government Engineering College |
| BookMark | eNp9kc1q3DAUhUWZQPO36RMIuitMIsk_srozw2QaSOJC0rW4lq9dDR5pInsmTFd9hD5jniSecQKhlK50kb5zOFfnhEycd0jIJ84uOGPiEl0jLiRjUn4gxyKRcppxlU7ezR_Jedct2QBzyVnEjom5hSIv8q80p3d-iy29Bbd7_v2nKJdoertFmgfb_1xhbw0t1r1d2V_QW-9o3jb-8ERrH-i9b7fWNXTuGusQw37-HnzZ4qo7I0c1tB2ev56n5MfV_GH2bXpTLK5n-c3UxCyRU4yGTJUE5KAiWXJUEAvG0ponEBmo4rhUqZKYlWmGEWbI00QomRohIKriJDol16Nv5WGp18GuIOy0B6sPFz40GsKwR4saENIUFKsNrwfbGIRUScIAs6yUlVSD1-fRax384wa7Xi_9Jrghvo54xmOZKCYHio2UCb7rAtba2P7wPX0A22rO9L4ZvW9GH5oZJF_-krwF_SfMR_jJtrj7D6nndwsxal4AUN6fwA |
| CitedBy_id | crossref_primary_10_1002_eng2_70268 |
| Cites_doi | 10.1109/ACCESS.2023.3270806 10.1016/j.swevo.2022.101145 10.1002/mmce.21064 10.3390/math11020413 10.1109/TEVC.2016.2519378 10.1109/TEVC.2015.2455812 10.1016/j.swevo.2020.100695 10.1007/3-540-45356-3_83 10.1109/4235.797969 10.1109/TEVC.2016.2549267 10.1016/j.cma.2006.07.010 10.1016/j.apenergy.2023.121153 10.1109/TSMC.2023.3298690 10.1109/TEVC.2018.2791283 10.1080/0305215X.2021.2021196 10.1088/2053‐1591/aa5f6a 10.1109/ACCESS.2020.2991752 10.1016/j.swevo.2021.100840 10.1016/j.camwa.2012.01.063 10.1109/TEVC.2016.2622301 10.1016/j.swevo.2018.05.004 10.1109/TEVC.2021.3118593 10.1109/TNNLS.2014.2314698 10.1007/s10489‐023‐04969‐8 10.1016/j.ejor.2006.08.008 10.1016/j.artint.2015.06.007 10.1007/s12293‐022‐00368‐7 10.1109/TEVC.2013.2262178 10.1109/TEVC.2016.2631279 10.1109/CEC.2014.6900491 10.5267/j.ijiec.2023.1.003 10.1016/j.ins.2016.09.026 10.1109/TEVC.2012.2227145 10.1109/TCYB.2020.3015998 10.1016/j.ejor.2014.05.019 10.1016/j.swevo.2020.100817 10.1007/s00500‐023‐09050‐7 10.1007/978‐3‐540‐30217‐9_84 10.1109/TEVC.2016.2600642 10.1016/j.cma.2020.113609 10.1016/j.asoc.2020.106078 10.1016/j.ins.2011.08.027 10.1016/j.engappai.2023.106454 10.1016/j.eswa.2023.122369 10.1109/TSMC.2019.2898456 10.3934/jimo.2020009 10.1109/ACCESS.2020.3036438 10.1016/j.swevo.2021.100925 10.1145/3377930.3390166 10.1007/s10489‐022‐03545‐w 10.1016/j.ins.2020.05.097 10.1007/978-3-030-72062-9_1 10.1109/TEVC.2007.892759 10.1016/j.mex.2023.102181 10.1109/TEVC.2013.2281533 10.1016/j.ins.2024.121608 10.1016/j.swevo.2020.100776 10.1016/j.jksuci.2023.101693 10.1007/s40747‐022‐00747‐0 10.1016/j.ins.2022.05.119 10.1109/TEVC.2015.2420112 10.1109/TEVC.2013.2281535 10.1109/CEC.2009.4982949 10.1080/00207543.2018.1504251 10.1038/s41598-024-76877-x 10.1016/j.swevo.2020.100794 10.1007/s40747‐017‐0039‐7 10.1109/CEC.2007.4424990 10.1162/EVCO_a_00009 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1002/eng2.70077 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2577-8196 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_aea66a90fc1f4b94a279550ae88b7d79 10_1002_eng2_70077 ENG270077 |
| Genre | researchArticle |
| GroupedDBID | 0R~ 1OC 24P AAMMB ABJCF ACCMX ACXQS ADKYN ADMLS ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO WIN AAYXX AFFHD ALUQN CITATION 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4057-e3710d7ae1a937b1e9a42006f15a3cad44b9697e8b68e3e8e1652976c22a3d453 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447045100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2577-8196 |
| IngestDate | Fri Oct 03 12:49:30 EDT 2025 Wed Aug 13 10:49:08 EDT 2025 Tue Nov 18 21:21:25 EST 2025 Sat Nov 29 08:05:33 EST 2025 Tue Sep 09 05:10:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4057-e3710d7ae1a937b1e9a42006f15a3cad44b9697e8b68e3e8e1652976c22a3d453 |
| Notes | The authors received no specific funding for this work. Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1024-8822 |
| OpenAccessLink | https://doaj.org/article/aea66a90fc1f4b94a279550ae88b7d79 |
| PQID | 3181475907 |
| PQPubID | 5066167 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aea66a90fc1f4b94a279550ae88b7d79 proquest_journals_3181475907 crossref_citationtrail_10_1002_eng2_70077 crossref_primary_10_1002_eng2_70077 wiley_primary_10_1002_eng2_70077_ENG270077 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 20250301 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Engineering reports (Hoboken, N.J.) |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 27 2021; 65 2023; 35 2017; 3 2017; 4 2007; 181 2020; 61 2019; 57 2023; 342 2020; 56 2004; 3242 2015; 228 2011; 19 2020; 8 2013; 17 2000 2020; 52 2024; 239 2023; 27 2022; 607 2022; 75 2020; 89 2014; 18 2022; abs/2201.05435 2012; 64 2020; 537 2023; 53 2023; 10 2023; 14 2025; 691 2023; 55 2023; 11 2017; 27 2023; 123 2015; 243 2012; 182 2009 2007 1999; 3 2008; 11 2018; 23 2024; 14 2018; 22 2021; 51 2015; 26 2021; 99 2023 2021; 376 2021 2019; 44 2020 2021; 17 2022; 8 2007; 196 2016; 20 2022; 14 2016; 374 2014 2021; 60 2021; 62 2016; 22 e_1_2_11_32_1 e_1_2_11_55_1 Perez‐Cham O. E. (e_1_2_11_7_1) 2020; 61 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 Palakonda V. (e_1_2_11_60_1) 2022; 607 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Wei L. S. (e_1_2_11_71_1) 2023; 35 Ma L. (e_1_2_11_58_1) 2021; 99 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 Li J. (e_1_2_11_44_1) 2020; 537 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 Palakonda V. (e_1_2_11_72_1) 2024; 14 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Li B. (e_1_2_11_49_1) 2014 Kukkonen S. (e_1_2_11_17_1) 2007 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 Shen J. (e_1_2_11_59_1) 2020; 52 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 Wang Q. (e_1_2_11_73_1) 2025; 691 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_28_1 e_1_2_11_5_1 Zhang Q. (e_1_2_11_34_1) 2008; 11 e_1_2_11_26_1 e_1_2_11_3_1 Wang Z. (e_1_2_11_24_1) 2022; 2201 e_1_2_11_21_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 Coello Coello C. A. (e_1_2_11_69_1) 2007 e_1_2_11_16_1 e_1_2_11_37_1 Palakonda V. (e_1_2_11_61_1) 2020; 8 e_1_2_11_39_1 Palakonda V. (e_1_2_11_70_1) 2023 Jiang E. (e_1_2_11_8_1) 2019; 57 Li K. (e_1_2_11_30_1) 2012; 182 |
| References_xml | – volume: 11 issue: 2 year: 2023 article-title: A Many‐Objective Evolutionary Algorithm Based on indicator and Decomposition publication-title: Mathematics – year: 2009 – volume: 14 start-page: 237 issue: 2 year: 2022 end-page: 251 article-title: Adaptive Multiobjective Evolutionary Algorithm for Large‐Scale Transformer Ratio Error Estimation publication-title: Memetic Computing – volume: 51 start-page: 1 issue: 3 year: 2021 end-page: 16 article-title: An Adaptive Resource Allocation Strategy for Objective Space Partition‐Based Multiobjective Optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 243 start-page: 423 issue: 2 year: 2015 end-page: 441 article-title: Preference‐Inspired Co‐Evolutionary Algorithms Using Weight Vectors publication-title: European Journal of Operational Research – volume: 342 year: 2023 article-title: A Non‐Simulation‐Based Linear Model for Analytical Reliability Evaluation of Radial Distribution Systems Considering Renewable DGs publication-title: Applied Energy – volume: 691 year: 2025 article-title: A Many‐Objective Evolutionary Algorithm Based on indicator Selection and Adaptive Angle Estimation publication-title: Information Sciences – volume: 57 start-page: 1756 issue: 6 year: 2019 end-page: 1771 article-title: An Improved Multi‐Objective Evolutionary Algorithm Based on Decomposition for Energy‐Efficient Permutation Flow Shop Scheduling Problem With Sequence‐Dependent Setup Time publication-title: International Journal of Production Research – volume: 61 year: 2020 article-title: Automata Design for Honeybee Search Algorithm and Its Applications to 3d Scene Reconstruction and Video Tracking publication-title: Swarm and Evolutionary Computation – volume: 607 start-page: 126 year: 2022 end-page: 152 article-title: An Adaptive Neighborhood‐Based Evolutionary Algorithm With Pivot‐Solution Based Selection for Multi‐and Many‐Objective Optimization publication-title: Information Sciences – year: 2021 – volume: 22 start-page: 129 issue: 1 year: 2018 end-page: 142 article-title: A Surrogate‐Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many‐Objective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 60 year: 2021 article-title: Multiobjective Evolutionary Algorithm Assisted Stacked Autoencoder for Polsar Image Classification publication-title: Swarm and Evolutionary Computation – volume: 3242 start-page: 832 year: 2004 end-page: 842 article-title: Indicator‐Based Selection in Multiobjective Search publication-title: Lecture Notes in Computer Science – volume: 99 start-page: 1 year: 2021 end-page: 13 article-title: An Adaptive Localized Decision Variable Analysis Approach to Large‐Scale Multiobjective and Many‐Objective Optimization publication-title: IEEE Transactions on Cybernetics – volume: 8 start-page: 82781 year: 2020 end-page: 82796 article-title: An Evolutionary Algorithm for Multi and Many‐Objective Optimization With Adaptive Mating and Environmental Selection publication-title: IEEE Access – volume: 182 start-page: 220 issue: 1 year: 2012 end-page: 242 article-title: Achieving Balance Between Proximity and Diversity in Multi‐Objective Evolutionary Algorithm publication-title: Information Sciences – volume: 228 start-page: 45 year: 2015 end-page: 65 article-title: Bi‐Goal Evolution for Many‐Objective Optimization Problems publication-title: Artificial Intelligence – volume: 4 issue: 3 year: 2017 article-title: Multi‐Objective Optimization in the Development of Oil and Water Repellent Cellulose Fabric Based on Response Surface Methodology and the Desirability Function publication-title: Materials Research Express – volume: 27 issue: 2 year: 2017 article-title: Performance Enhancement of Multiband Antennas Through a Two‐Stage Optimization Technique publication-title: International Journal of RF and Microwave Computer‐Aided Engineering – volume: 14 start-page: 29006 issue: 1 year: 2024 article-title: External Archive Guided Radial‐Grid Multi Objective Differential Evolution publication-title: Scientific Reports – volume: 20 start-page: 275 issue: 2 year: 2016 end-page: 298 article-title: A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large‐Scale Variables publication-title: IEEE Transactions on Evolutionary Computation – volume: 3 start-page: 67 issue: 1 year: 2017 end-page: 81 article-title: A Benchmark Test Suite for Evolutionary Many‐Objective Optimization publication-title: Complex & Intelligent Systems – volume: 8 start-page: 203369 year: 2020 end-page: 203381 article-title: Contribution Based Co‐Evolutionary Algorithm for Large‐Scale Optimization Problems publication-title: IEEE Access – volume: 11 start-page: 42324 year: 2023 end-page: 42330 article-title: A Weight Vector Adjustment Method for Decomposition‐Based Multi‐Objective Evolutionary Algorithms publication-title: IEEE Access – volume: 52 start-page: 3645 issue: 5 year: 2020 end-page: 3657 article-title: A Controlled Strengthened Dominance Relation for Evolutionary Many‐Objective Optimization publication-title: IEEE Transactions on Cybernetics – volume: 65 year: 2021 article-title: An Interactive Filter‐Wrapper Multi‐Objective Evolutionary Algorithm for Feature Selection publication-title: Swarm and Evolutionary Computation – volume: 53 start-page: 26949 issue: 22 year: 2023 end-page: 26966 article-title: Adaptive Fractional‐Order Genetic‐Particle Swarm Optimization Otsu Algorithm for Image Segmentation publication-title: Applied Intelligence – volume: 17 start-page: 721 issue: 5 year: 2013 end-page: 736 article-title: A Grid‐Based Evolutionary Algorithm for Many‐Objective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 62 year: 2021 article-title: A Cooperative Coevolution Framework for Evolutionary Learning and Instance Selection publication-title: Swarm and Evolutionary Computation – volume: 11 start-page: 712 issue: 6 year: 2008 end-page: 731 article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 64 start-page: 944 issue: 5 year: 2012 end-page: 955 article-title: An Improved Strength Pareto Evolutionary Algorithm 2 With Application to the Optimization of Distributed Generations publication-title: Computers and Mathematics With Applications – volume: 20 start-page: 16 issue: 1 year: 2016 end-page: 37 article-title: A New Dominance Relation‐Based Evolutionary Algorithm for Many‐Objective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 20 start-page: 924 issue: 6 year: 2016 end-page: 938 article-title: Stochastic Ranking Algorithm for Many‐Objective Optimization Based on Multiple Indicators publication-title: IEEE Transactions on Evolutionary Computation – volume: 196 start-page: 879 issue: 4–6 year: 2007 end-page: 893 article-title: Response Surface Approximation of Pareto Optimal Front in Multi‐Objective Optimization publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 239 year: 2024 article-title: A Novel Approach to Three‐Way Decision Model Under Fuzzy Soft Dominance Degree Relations and Emergency Situation publication-title: Expert Systems With Applications – volume: 537 start-page: 203 year: 2020 end-page: 226 article-title: Dmaoea‐c: Decomposition‐Based Many‐Objective Evolutionary Algorithm With the ‐Constraint Framework publication-title: Information Sciences – volume: 75 year: 2022 article-title: ACDB‐EA: Adaptive Convergence‐Diversity Balanced Evolutionary Algorithm for Many‐Objective Optimization publication-title: Swarm and Evolutionary Computation – volume: 17 start-page: 1001 issue: 2 year: 2021 end-page: 1023 article-title: Non‐Dominated Sorting Methods for Multi‐Objective Optimization: Review and Numerical Comparison publication-title: Journal of Industrial and Management Optimization – volume: 8 start-page: 5157 issue: 6 year: 2022 end-page: 5176 article-title: A Decomposition‐Based Many‐Objective Evolutionary Algorithm With Optional Performance Indicators publication-title: Complex & Intelligent Systems – volume: 55 start-page: 650 issue: 4 year: 2023 end-page: 667 article-title: An Approach for Solving the Three‐Objective Arc Welding Robot Path Planning Problem publication-title: Engineering Optimization – volume: 22 start-page: 32 issue: 1 year: 2016 end-page: 46 article-title: Particle Swarm Optimization With a Balanceable Fitness Estimation for Many‐Objective Optimization Problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 14 start-page: 293 issue: 2 year: 2023 end-page: 308 article-title: MaOTLBO: Many‐Objective Teaching‐Learning‐Based Optimizer for Control and Monitoring the Optimal Power Flow of Modern Power Systems publication-title: International Journal of Industrial Engineering Computations – volume: 20 start-page: 773 issue: 5 year: 2016 end-page: 791 article-title: A Reference Vector Guided Evolutionary Algorithm for Many‐Objective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 23 start-page: 173 issue: 2 year: 2018 end-page: 187 article-title: Igd Indicator‐Based Evolutionary Algorithm for Many‐Objective Optimization Problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 18 start-page: 577 issue: 4 year: 2014 end-page: 601 article-title: An Evolutionary Many‐Objective Optimization Algorithm Using Reference‐Point‐Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints publication-title: IEEE Transactions on Evolutionary Computation – start-page: 3983 year: 2007 end-page: 3990 – volume: 19 start-page: 45 issue: 1 year: 2011 end-page: 76 article-title: Hype: An Algorithm for Fast Hypervolume‐Based Many‐Objective Optimization publication-title: Evolutionary Computation – year: 2007 – volume: 181 start-page: 1653 issue: 3 year: 2007 end-page: 1669 article-title: Sms‐Emoa: Multiobjective Selection Based on Dominated Hypervolume publication-title: European Journal of Operational Research – year: 2000 – volume: 123 year: 2023 article-title: Problem‐Specific Knowledge MOEA/D for Energy‐Efficient Scheduling of Distributed Permutation Flow Shop in Heterogeneous Factories publication-title: Engineering Applications of Artificial Intelligence – volume: 35 issue: 8 year: 2023 article-title: A Many‐Objective Evolutionary Algorithm With Local Shifted Density Estimation Based on Dynamic Decomposition publication-title: Journal of King Saud University, Computer and Information Sciences – volume: 376 year: 2021 article-title: The Arithmetic Optimization Algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 2869 year: 2014 end-page: 2876 – volume: 18 start-page: 450 issue: 3 year: 2014 end-page: 455 article-title: Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems publication-title: IEEE Transactions on Evolutionary Computation – start-page: 7618 year: 2023 end-page: 7630 article-title: Pre‐DEMO: Preference‐Inspired Differential Evolution for Multi/Many‐Objective Optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 26 start-page: 277 issue: 2 year: 2015 end-page: 289 article-title: Scatter Balance: An Angle‐Based Supervised Dimensionality Reduction publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: abs/2201.05435 start-page: 1 year: 2022 end-page: 15 article-title: An Efficient Multi‐Indicator and Many‐Objective Optimization Algorithm Based on Two‐Archive publication-title: arXiv Preprint arXiv:2201.05435 – volume: 27 start-page: 445 issue: 3 year: 2021 end-page: 459 article-title: A Fuzzy Decision Variables Framework for Large‐Scale Multiobjective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 27 start-page: 17729 issue: 23 year: 2023 end-page: 17745 article-title: Preference‐Inspired Coevolutionary Algorithm With Sparse Autoencoder for Many‐Objective Optimization publication-title: Soft Computing – volume: 53 start-page: 7423 issue: 7 year: 2023 end-page: 7438 article-title: A Reference Vector Adaptive Strategy for Balancing Diversity and Convergence in Many‐Objective Evolutionary Algorithms publication-title: Applied Intelligence – year: 2020 – volume: 374 start-page: 115 year: 2016 end-page: 134 article-title: Many Objective Particle Swarm Optimization publication-title: Information Sciences – volume: 22 start-page: 97 issue: 1 year: 2018 end-page: 112 article-title: A Decision Variable Clustering‐Based Evolutionary Algorithm for Large‐Scale Many‐Objective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 60 year: 2021 article-title: Evolutionary Many‐Objective Algorithm Based on Fractional Dominance Relation and Improved Objective Space Decomposition Strategy publication-title: Swarm and Evolutionary Computation – volume: 18 start-page: 348 issue: 3 year: 2014 end-page: 365 article-title: Shift‐Based Density Estimation for Pareto‐Based Algorithms in Many‐Objective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 3 start-page: 257 issue: 4 year: 1999 end-page: 271 article-title: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach publication-title: IEEE Transactions on Evolutionary Computation – volume: 56 issue: 1 year: 2020 article-title: A Grey Prediction‐Based Evolutionary Algorithm for Dynamic Multiobjective Optimization publication-title: Swarm and Evolutionary Computation – volume: 89 year: 2020 article-title: An Easy‐To‐Use Real‐World Multi‐Objective Optimization Problem Suite publication-title: Applied Soft Computing – volume: 10 year: 2023 article-title: Many Objective Meta‐Heuristic Methods for Solving Constrained Truss Optimisation Problems: A Comparative Analysis publication-title: MethodsX – volume: 44 start-page: 404 year: 2019 end-page: 419 article-title: Libea: A Lebesgue Indicator‐Based Evolutionary Algorithm for Multi‐Objective Optimization publication-title: Swarm and Evolutionary Computation – ident: e_1_2_11_40_1 doi: 10.1109/ACCESS.2023.3270806 – ident: e_1_2_11_23_1 doi: 10.1016/j.swevo.2022.101145 – ident: e_1_2_11_67_1 doi: 10.1002/mmce.21064 – ident: e_1_2_11_25_1 doi: 10.3390/math11020413 – ident: e_1_2_11_41_1 doi: 10.1109/TEVC.2016.2519378 – ident: e_1_2_11_56_1 doi: 10.1109/TEVC.2015.2455812 – ident: e_1_2_11_47_1 doi: 10.1016/j.swevo.2020.100695 – ident: e_1_2_11_10_1 doi: 10.1007/3-540-45356-3_83 – volume: 2201 start-page: 1 year: 2022 ident: e_1_2_11_24_1 article-title: An Efficient Multi‐Indicator and Many‐Objective Optimization Algorithm Based on Two‐Archive publication-title: arXiv Preprint arXiv:2201.05435 – ident: e_1_2_11_31_1 doi: 10.1109/4235.797969 – ident: e_1_2_11_18_1 doi: 10.1109/TEVC.2016.2549267 – ident: e_1_2_11_68_1 doi: 10.1016/j.cma.2006.07.010 – ident: e_1_2_11_3_1 doi: 10.1016/j.apenergy.2023.121153 – start-page: 7618 year: 2023 ident: e_1_2_11_70_1 article-title: Pre‐DEMO: Preference‐Inspired Differential Evolution for Multi/Many‐Objective Optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2023.3298690 – ident: e_1_2_11_26_1 doi: 10.1109/TEVC.2018.2791283 – ident: e_1_2_11_4_1 doi: 10.1080/0305215X.2021.2021196 – ident: e_1_2_11_66_1 doi: 10.1088/2053‐1591/aa5f6a – volume: 8 start-page: 82781 year: 2020 ident: e_1_2_11_61_1 article-title: An Evolutionary Algorithm for Multi and Many‐Objective Optimization With Adaptive Mating and Environmental Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991752 – ident: e_1_2_11_48_1 doi: 10.1016/j.swevo.2021.100840 – volume: 99 start-page: 1 year: 2021 ident: e_1_2_11_58_1 article-title: An Adaptive Localized Decision Variable Analysis Approach to Large‐Scale Multiobjective and Many‐Objective Optimization publication-title: IEEE Transactions on Cybernetics – ident: e_1_2_11_11_1 doi: 10.1016/j.camwa.2012.01.063 – ident: e_1_2_11_43_1 doi: 10.1109/TEVC.2016.2622301 – ident: e_1_2_11_29_1 doi: 10.1016/j.swevo.2018.05.004 – ident: e_1_2_11_54_1 doi: 10.1109/TEVC.2021.3118593 – ident: e_1_2_11_45_1 doi: 10.1109/TNNLS.2014.2314698 – ident: e_1_2_11_6_1 doi: 10.1007/s10489‐023‐04969‐8 – ident: e_1_2_11_27_1 doi: 10.1016/j.ejor.2006.08.008 – ident: e_1_2_11_53_1 doi: 10.1016/j.artint.2015.06.007 – ident: e_1_2_11_2_1 doi: 10.1007/s12293‐022‐00368‐7 – ident: e_1_2_11_22_1 doi: 10.1109/TEVC.2013.2262178 – ident: e_1_2_11_50_1 doi: 10.1109/TEVC.2016.2631279 – start-page: 2869 volume-title: In 2014 IEEE Congress on Evolutionary Computation (CEC) year: 2014 ident: e_1_2_11_49_1 doi: 10.1109/CEC.2014.6900491 – ident: e_1_2_11_36_1 doi: 10.5267/j.ijiec.2023.1.003 – ident: e_1_2_11_37_1 doi: 10.1016/j.ins.2016.09.026 – ident: e_1_2_11_15_1 doi: 10.1109/TEVC.2012.2227145 – volume: 52 start-page: 3645 issue: 5 year: 2020 ident: e_1_2_11_59_1 article-title: A Controlled Strengthened Dominance Relation for Evolutionary Many‐Objective Optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.3015998 – ident: e_1_2_11_52_1 doi: 10.1016/j.ejor.2014.05.019 – volume: 61 year: 2020 ident: e_1_2_11_7_1 article-title: Automata Design for Honeybee Search Algorithm and Its Applications to 3d Scene Reconstruction and Video Tracking publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100817 – ident: e_1_2_11_51_1 doi: 10.1007/s00500‐023‐09050‐7 – ident: e_1_2_11_28_1 doi: 10.1007/978‐3‐540‐30217‐9_84 – ident: e_1_2_11_57_1 doi: 10.1109/TEVC.2016.2600642 – ident: e_1_2_11_62_1 doi: 10.1016/j.cma.2020.113609 – ident: e_1_2_11_64_1 doi: 10.1016/j.asoc.2020.106078 – volume: 182 start-page: 220 issue: 1 year: 2012 ident: e_1_2_11_30_1 article-title: Achieving Balance Between Proximity and Diversity in Multi‐Objective Evolutionary Algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.027 – ident: e_1_2_11_5_1 doi: 10.1016/j.engappai.2023.106454 – ident: e_1_2_11_14_1 doi: 10.1016/j.eswa.2023.122369 – ident: e_1_2_11_33_1 doi: 10.1109/TSMC.2019.2898456 – ident: e_1_2_11_13_1 doi: 10.3934/jimo.2020009 – ident: e_1_2_11_55_1 doi: 10.1109/ACCESS.2020.3036438 – ident: e_1_2_11_46_1 doi: 10.1016/j.swevo.2021.100925 – ident: e_1_2_11_20_1 doi: 10.1145/3377930.3390166 – ident: e_1_2_11_12_1 doi: 10.1007/s10489‐022‐03545‐w – volume: 537 start-page: 203 year: 2020 ident: e_1_2_11_44_1 article-title: Dmaoea‐c: Decomposition‐Based Many‐Objective Evolutionary Algorithm With the ‐Constraint Framework publication-title: Information Sciences doi: 10.1016/j.ins.2020.05.097 – ident: e_1_2_11_21_1 doi: 10.1007/978-3-030-72062-9_1 – volume: 11 start-page: 712 issue: 6 year: 2008 ident: e_1_2_11_34_1 article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – ident: e_1_2_11_65_1 doi: 10.1016/j.mex.2023.102181 – ident: e_1_2_11_42_1 doi: 10.1109/TEVC.2013.2281533 – volume: 691 year: 2025 ident: e_1_2_11_73_1 article-title: A Many‐Objective Evolutionary Algorithm Based on indicator Selection and Adaptive Angle Estimation publication-title: Information Sciences doi: 10.1016/j.ins.2024.121608 – ident: e_1_2_11_19_1 doi: 10.1016/j.swevo.2020.100776 – volume: 35 issue: 8 year: 2023 ident: e_1_2_11_71_1 article-title: A Many‐Objective Evolutionary Algorithm With Local Shifted Density Estimation Based on Dynamic Decomposition publication-title: Journal of King Saud University, Computer and Information Sciences doi: 10.1016/j.jksuci.2023.101693 – ident: e_1_2_11_39_1 doi: 10.1007/s40747‐022‐00747‐0 – volume: 607 start-page: 126 year: 2022 ident: e_1_2_11_60_1 article-title: An Adaptive Neighborhood‐Based Evolutionary Algorithm With Pivot‐Solution Based Selection for Multi‐and Many‐Objective Optimization publication-title: Information Sciences doi: 10.1016/j.ins.2022.05.119 – ident: e_1_2_11_16_1 doi: 10.1109/TEVC.2015.2420112 – ident: e_1_2_11_38_1 doi: 10.1109/TEVC.2013.2281535 – ident: e_1_2_11_35_1 doi: 10.1109/CEC.2009.4982949 – volume: 57 start-page: 1756 issue: 6 year: 2019 ident: e_1_2_11_8_1 article-title: An Improved Multi‐Objective Evolutionary Algorithm Based on Decomposition for Energy‐Efficient Permutation Flow Shop Scheduling Problem With Sequence‐Dependent Setup Time publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1504251 – volume-title: Evolutionary Algorithms for Solving Multi‐Objective Problems year: 2007 ident: e_1_2_11_69_1 – volume: 14 start-page: 29006 issue: 1 year: 2024 ident: e_1_2_11_72_1 article-title: External Archive Guided Radial‐Grid Multi Objective Differential Evolution publication-title: Scientific Reports doi: 10.1038/s41598-024-76877-x – ident: e_1_2_11_9_1 doi: 10.1016/j.swevo.2020.100794 – ident: e_1_2_11_63_1 doi: 10.1007/s40747‐017‐0039‐7 – start-page: 3983 volume-title: In 2007 IEEE Congress on Evolutionary Computation year: 2007 ident: e_1_2_11_17_1 doi: 10.1109/CEC.2007.4424990 – ident: e_1_2_11_32_1 doi: 10.1162/EVCO_a_00009 |
| SSID | ssj0002171030 |
| Score | 2.291671 |
| Snippet | ABSTRACT
Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective... Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective... ABSTRACT Currently, the use of multi‐objective optimization algorithms has been applied in many fields to find the efficient solution of the multiple objective... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Arithmetic Convergence Decision making Decomposition Genetic algorithms information feedback mechanism many‐objective arithmetic optimization algorithm many‐objective optimization Mathematical analysis metaheuristic algorithm Multiple objective analysis Objectives Optimization Pareto optimality Pareto optimum Variables |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3oiFgizBBaTQjfM0FxRQC5fuVipIvVl-TLZF2027u-2Zn8Bv5Jcw43iXrYR64RYljuV4xuPPE_v7AN5Yi8PCVj6hCEkLlMLKxDqLSYuEd5UhxOHaIDZRjUb10ZE6iAm3RdxWuYqJIVD7znGOfId8L2VuumH18ew8YdUo_rsaJTRuwi1mSUjD1r3DdY6F4DaraK1ZSeUOzibyfcUcNlfmoUDXfwVjbiLVMNXs3f_fRj6AexFkiqb3iodwA2eP4O4G9eBjcPtm3IybD6IRo-4Sp2KfosLvn7_G9kcfAuntk-XxKZ9xFGOKK6fxwKZoppMuPBKEd8VhN-WUhNioXBz0IjWLJ_B9b_fb569JFFxIHOO2BDPqL18ZTA2hFpuiMjmnHNq0MJkzPs-tKlWFtS1rzLDGtCwk4Rknpcl8XmRPYWvWzfAZCEP1oVeuKJXPpXSWYJf0DFbKIvVtPoC3q-7XLrKRsyjGVPc8ylKzqXQw1QBer8ue9Rwc_yz1ia24LsG82eFGN5_oOAy1QVOWRg1bl7b0MbmRlaI1msG6Joet1AC2V4bVcTAv9F-rDuBd8ItrmqF3R19kuHp-fV0v4I5kLeGwn20btpbzC3wJt93l8mQxfxUc-Q-05_xH priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYo7aEc6L9YSitL5dJKKWvnx3HVS1pBe2F3JVqJm2U7ky1o2aDdhTOPwDPyJJ1xsmGREFLVW5SMHWc8M_48ir9hbNc56KdOlRFGSNygpE5GzjuIKkC8qy0iDl-FYhNqMMiPj_VojX1dnoVp-CG6hBt5RojX5ODWzfduSUNhOpafFdHRPGKPhYgV2bRMRl2GBcE21dCi6nKpwlCMttbxk8q92-Z3VqRA3H8Hba5i1rDoHDz7v-E-Z5st2ORFYx0v2BpMX7KNFQrCV8wf2mExLL7wgg_qS5jwQ4wON1fXQ3fahEJsfbL4c0ZnHfkQ48tZe3CTF5NxHR5xxL38qJ5QaoKvdM5HTbGa-Wv2-2D_1_efUVt4IfKE3yKIUXOlsiAsohcnQNuEUg-VSG3sbZkkTmdaQe6yHGLIQWSpRFzjpbRxmaTxG7Y-raewxbjF_qDUPs10mUjpHcIvWRJoyVJRVkmPfVwq3_iWlZyKY0xMw6csDSnOBMX12IdO9rzh4rhX6hvNYSdB_NnhRj0bm9YdjQWbZVb3Ky8q_JjESqVxr2Yhz9Fwle6xnaUFmNap5wbDnyB6xD6-41OY6weGYfYHP2S42v4X4bfsqaQKw-Evtx22vphdwDv2xF8uTuaz98HA_wILqvwR priority: 102 providerName: Wiley-Blackwell |
| Title | MaOAOA: A Novel Many‐Objective Arithmetic Optimization Algorithm for Solving Engineering Problems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70077 https://www.proquest.com/docview/3181475907 https://doaj.org/article/aea66a90fc1f4b94a279550ae88b7d79 |
| Volume | 7 |
| WOSCitedRecordID | wos001447045100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: M7S dateStart: 20191201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: PIMPY dateStart: 20191201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Journals customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: WIN dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Open Access customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VygEOiNIilo-VpXJppZSN8-neAlooh81Ghar0ZNnOhFItu4hdOPMT-I39JYydsAoSKpfeEseJnfF4_GzZ7wHsaY29SCelRxGSJiiR5p42Gr0KCe8KRYjDVE5sIsnz9PxcFC2pL7snrKYHrg23r1DFsRK9yvhVqEWoeCIIVStMUyoicUf3eoloTaZsDCagbfWz5nykfB_HF_xLYtlrno1Ajqj_GbpsY1Q3yBytwWqDDllW1-odvMHxOqy0OAPfgxmoYTbMvrKM5ZM7HLEBdee_9w9D_aeOXfT25ez3lT2cyIYUEK6ak5YsG11M3CNGQJWdTkZ2LYG1Ps6KWl1m-gF-HPXPDr95jVKCZyzg8jCg3y0Thb4iuKF9FCq0awWVH6nAqDIky8UiwVTHKQaYoh9HnICI4VwFZRgFG7A4noxxE5ii72EpTBSLMuTcaMJLvLQoI478sgo78OnJetI0NOJWzWIkawJkLq2lpbN0Bz7O817X5Bkv5jqwjTDPYQmvXQK5gWzcQL7mBh3YeWpC2fTCqaR45Vs-wx6V8dk16z-qIfv5MXdXW_-jQtuwzK1UsNuutgOLs5tb3IUlcze7nN50YYGHRRfeHvTz4nvX-W7Xbjs9pbTiZFD8orufJ_kjf5X05w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qChKw4I0YKGAJWIAUOvHkZSSEArS0aidTqUXqzvhxM201nZSZoYgdn8CX8FF8CddOMkwl1F0X7KLEseL45Nxjx74H4JnW2I11agNiSBqgxJoH2mgMSiS9KxQpDlN6s4m0KLL9fbGzBL_avTBuWWXLiZ6obWXcHPkqYS90uem66duTL4FzjXJ_V1sLjRoWW_j9Gw3Zpm82P1D_Pud8fW3v_UbQuAoExomTAHsUVG2qMFQUmnWIQkVuXF2GseoZZaNIi0SkmOkkwx5mGCYxp6BtOFc9GzmXCKL8SyQjuPBLBXfnczok751r1zwLKl_F8ZC_Sl3OnDNxz9sDnNG0i8rYh7b1G__bS7kJ1xsRzfIa9bdgCce34dpCasU7YPpqkA_y1yxnRXWKI9Yn1vv94-dAH9UUT3cfzg6O3R5ONiDePG42pLJ8NKz8JUZ6nu1WIzflwhYqZzu1Cc_0Lny6kFbeg-VxNcb7wBTVh1aYOBE24txohwfrxFgSh7aMOvCi7W5pmmzrzvRjJOs80Vw6aEgPjQ48nZc9qXOM_LPUO4eaeQmXF9yfqCZD2dCMVKiSRIluacKSGhMpngoagyrMMvogU9GBlRZIsiGrqfyLog689Dg85zHkWvGR-6MH59f1BK5s7PW35fZmsfUQrnLnm-zX7q3A8mzyFR_BZXM6O5xOHvuPiMHniwboHzggVyI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOoTggW9EYYAl4AGk0MbNl5EQCmyFajStBJPGk7GdmzLUNaMtQ7zxE_g9_Bx-CddOUjoJ7W0PvEWJY8XJ8bnHjn0PwEOtsRvqOPeIIWmAEmruaaPRK5D0rlCkOEzhzCbiLEv298V4A341e2HsssqGEx1R56Wxc-Qdwp5vc9N1405RL4sYb_dfHH3xrIOU_dPa2GlUENnF799o-LZ4Ptimb_2I8_7O-1dvvNphwDNWqHjYowCbxwp9RWFa-yhUYMfYhR-qnlF5EGgRiRgTHSXYwwT9KOQUwA3nqpcH1jGC6H-TJHnAW7A5HgzHH1YzPCT2rYfXKicq7-Bswp_GNoPOiSjozAJOKNx1newCXf_y__yKrsClWl6ztOoPV2EDZ9fg4lrSxetghmqUjtJnLGVZeYxTNiQ-_P3j50h_rsif7j5Yfjq0uzvZiBj1sN6qytLppHSXGCl99q6c2skYtlY5G1f2PIsbsHcmrbwJrVk5w1vAFNWHuTBhJPKAc6NJcPLcyrQo9PMiaMPj5tNLU-dht3YgU1llkObSwkQ6mLThwarsUZV95J-lXloErUrYjOHuRDmfyJqApEIVRUp0C-MX1JhA8VjQ6FRhklBXjUUbthpQyZrGFvIvotrwxGHylMeQO9lr7o5un17XfThPuJRvB9nuHbjAraGyW9S3Ba3l_CvehXPmeHmwmN-rexSDj2eN0D8esWFY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaOAOA%3A+A+Novel+Many%E2%80%90Objective+Arithmetic+Optimization+Algorithm+for+Solving+Engineering+Problems&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Pradeep+Jangir&rft.au=Arpita&rft.au=Sundaram+B.+Pandya&rft.au=Gulothungan+G.&rft.date=2025-03-01&rft.pub=Wiley&rft.eissn=2577-8196&rft.volume=7&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.70077&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aea66a90fc1f4b94a279550ae88b7d79 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon |