PixISegNet: pixel-level iris segmentation network using convolutional encoder–decoder with stacked hourglass bottleneck

In this paper, we present a new iris ROI segmentation algorithm using a deep convolutional neural network (NN) to achieve the state-of-the-art segmentation performance on well-known iris image data sets. The authors’ model surpasses the performance of state-of-the-art Iris DenseNet framework by appl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET biometrics Ročník 9; číslo 1; s. 11 - 24
Hlavní autori: Jha, Ranjeet Ranjan, Jaswal, Gaurav, Gupta, Divij, Saini, Shreshth, Nigam, Aditya
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Stevenage The Institution of Engineering and Technology 01.01.2020
John Wiley & Sons, Inc
Predmet:
ISSN:2047-4938, 2047-4946, 2047-4946
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a new iris ROI segmentation algorithm using a deep convolutional neural network (NN) to achieve the state-of-the-art segmentation performance on well-known iris image data sets. The authors’ model surpasses the performance of state-of-the-art Iris DenseNet framework by applying several strategies, including multi-scale/ multi-orientation training, model training from scratch, and proper hyper-parameterisation of crucial parameters. The proposed PixISegNet consists of an autoencoder which primarily uses long and short skip connections and a stacked hourglass network between encoder and decoder. There is a continuous scale up–down in stacked hourglass networks, which helps in extracting features at multiple scales and robustly segments the iris even in an occluded environment. Furthermore, cross-entropy loss and content loss optimise the proposed model. The content loss considers the high-level features, thus operating at a different scale of abstraction, which compliments the cross-entropy loss, which considers pixel-to-pixel classification loss. Additionally, they have checked the robustness of the proposed network by rotating images to certain degrees with a change in the aspect ratio along with blurring and a change in contrast. Experimental results on the various iris characteristics demonstrate the superiority of the proposed method over state-of-the-art iris segmentation methods considered in this study. In order to demonstrate the network generalisation, they deploy a very stringent TOTA (i.e. train-once-test-all) strategy. Their proposed method achieves $E_1$E1 scores of 0.00672, 0.00916 and 0.00117 on UBIRIS-V2, IIT-D and CASIA V3.0 Interval data sets, respectively. Moreover, such a deep convolutional NN for segmentation when included in an end-to-end iris recognition system with a siamese based matching network will augment the performance of the siamese network.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2047-4938
2047-4946
2047-4946
DOI:10.1049/iet-bmt.2019.0025