Kernel Regression for Image Processing and Reconstruction

In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ideas for use in image denoising, upscaling, interpolation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 16; H. 2; S. 349 - 366
Hauptverfasser: Takeda, H., Farsiu, S., Milanfar, P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.02.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ideas for use in image denoising, upscaling, interpolation, fusion, and more. Furthermore, we establish key relationships with some popular existing methods and show how several of these algorithms, including the recently popularized bilateral filter, are special cases of the proposed framework. The resulting algorithms and analyses are amply illustrated with practical examples
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2006.888330