Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data
This article proposes an imputation procedure that uses the factors estimated from a tall block along with the re-rotated loadings estimated from a wide block to impute missing values in a panel of data. Assuming that a strong factor structure holds for the full panel of data and its sub-blocks, it...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 116; číslo 536; s. 1746 - 1763 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Alexandria
Taylor & Francis
02.10.2021
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article proposes an imputation procedure that uses the factors estimated from a tall block along with the re-rotated loadings estimated from a wide block to impute missing values in a panel of data. Assuming that a strong factor structure holds for the full panel of data and its sub-blocks, it is shown that the common component can be consistently estimated at four different rates of convergence without requiring regularization or iteration. An asymptotic analysis of the estimation error is obtained. An application of our analysis is estimation of counterfactuals when potential outcomes have a factor structure. We study the estimation of average and individual treatment effects on the treated and establish a normal distribution theory that can be useful for hypothesis testing. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-1459 1537-274X 1537-274X |
| DOI: | 10.1080/01621459.2021.1967163 |