Optimality conditions for differentiable linearly constrained pseudoconvex programs

The aim of this paper is to study optimality conditions for differentiable linearly constrained pseudoconvex programs. The stated results are based on new transversality conditions which can be used instead of complementarity ones. Necessary and sufficient optimality conditions are stated under suit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Decisions in economics and finance Ročník 47; číslo 2; s. 497 - 512
Hlavní autoři: Cambini, Riccardo, Riccardi, Rossana
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Springer Nature B.V
Témata:
ISSN:1593-8883, 1129-6569
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this paper is to study optimality conditions for differentiable linearly constrained pseudoconvex programs. The stated results are based on new transversality conditions which can be used instead of complementarity ones. Necessary and sufficient optimality conditions are stated under suitable generalized convexity properties. Moreover, two different pairs of dual problems are proposed and weak and strong duality results proved. Finally, it is shown how transversality conditions can be applied to characterize optimality of convex quadratic problems and to efficiently solve a particular class of Max-Min problems
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1593-8883
1129-6569
DOI:10.1007/s10203-024-00454-0