Optimality conditions for differentiable linearly constrained pseudoconvex programs

The aim of this paper is to study optimality conditions for differentiable linearly constrained pseudoconvex programs. The stated results are based on new transversality conditions which can be used instead of complementarity ones. Necessary and sufficient optimality conditions are stated under suit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Decisions in economics and finance Ročník 47; číslo 2; s. 497 - 512
Hlavní autori: Cambini, Riccardo, Riccardi, Rossana
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2024
Springer Nature B.V
Predmet:
ISSN:1593-8883, 1129-6569
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The aim of this paper is to study optimality conditions for differentiable linearly constrained pseudoconvex programs. The stated results are based on new transversality conditions which can be used instead of complementarity ones. Necessary and sufficient optimality conditions are stated under suitable generalized convexity properties. Moreover, two different pairs of dual problems are proposed and weak and strong duality results proved. Finally, it is shown how transversality conditions can be applied to characterize optimality of convex quadratic problems and to efficiently solve a particular class of Max-Min problems
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1593-8883
1129-6569
DOI:10.1007/s10203-024-00454-0