Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the Projection Neural Network
In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalitie...
Uložené v:
| Vydané v: | IEEE transactions on neural networks Ročník 17; číslo 6; s. 1487 - 1499 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.11.2006
Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1045-9227, 1941-0093 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 1045-9227 1941-0093 |
| DOI: | 10.1109/TNN.2006.879774 |