Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound

FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks Jg. 17; H. 5; S. 1265 - 1277
Hauptverfasser: Koldovsky, Z., Tichavsky, P., Oja, E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.09.2006
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:1045-9227, 1941-0093
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramer-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha>2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo on separating sources with distribution GG(alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals
AbstractList FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramér-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha > 2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo et al. on separating sources with distribution GG (alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals.FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramér-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha > 2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo et al. on separating sources with distribution GG (alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals.
FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramer-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha>2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo on separating sources with distribution GG(alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals
FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramér-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha > 2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo et al. on separating sources with distribution GG (alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals.
Author Koldovsky, Z.
Oja, E.
Tichavsky, P.
Author_xml – sequence: 1
  givenname: Z.
  surname: Koldovsky
  fullname: Koldovsky, Z.
  organization: Fac. of Nucl. Sci. & Phys. Eng., Czech Tech. Univ., Prague
– sequence: 2
  givenname: P.
  surname: Tichavsky
  fullname: Tichavsky, P.
– sequence: 3
  givenname: E.
  surname: Oja
  fullname: Oja, E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18100830$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17001986$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1URP_AmQMS8gU4ZTtOYsc-blctVFoVCRWukeOMW6PEXmyvUB-B5-LFcNlFK3HoZeaT9ftmrPlOyZEPHgl5zWDBGKjz25ubRQ0gFrLjSrFn5ISpllUAqjkqGlpeqbrujslpSt8BWMtBvCDHrCtaSXFCwqW1zjj0mX7T0enSg6XL6S5El-9neqVTvl4tqQ2RXvsRN1hKgVZh3pSvFLX0enpILtFlztp55-9ovke6inr-_StWX3Sg6_ATI70IWz--JM-tnhK-2vcz8vXq8nb1qVp__lj2rCvTQpsrpc0gdAPWNgI6yQfOrUArmQU2DqYbjEE5IG-0lKMdat5ww8ujAhjrQWJzRj7s5m5i-LHFlPvZJYPTpD2GbeqlEnUtFWeFfP8kKaRUHW-ggG_34HaYcew30c06PvT_jlmAd3tAJ6MnG7U3Lh04yQDk30HnO87EkFJEe0Cgf4y1L7H2j7H2u1iLg__nMC7r7ILPUbvpCd-bnc8h4mGLkJ1qePMHkvyvjg
CODEN ITNNEP
CitedBy_id crossref_primary_10_1155_2011_506464
crossref_primary_10_3390_a14060165
crossref_primary_10_1088_0022_3727_40_19_033
crossref_primary_10_1016_j_aca_2009_09_019
crossref_primary_10_1109_LSP_2009_2035731
crossref_primary_10_1016_j_future_2019_07_005
crossref_primary_10_1016_j_jmva_2019_104568
crossref_primary_10_1109_JPROC_2009_2024776
crossref_primary_10_1016_j_dsp_2020_102827
crossref_primary_10_1002_hbm_20819
crossref_primary_10_4028_www_scientific_net_AMR_433_440_2551
crossref_primary_10_1109_JSTSP_2019_2938488
crossref_primary_10_1109_LSP_2022_3180680
crossref_primary_10_1109_TNNLS_2018_2806959
crossref_primary_10_1016_j_jfranklin_2025_107819
crossref_primary_10_1109_TNN_2007_908648
crossref_primary_10_1109_TNN_2006_889941
crossref_primary_10_1016_j_jedc_2022_104434
crossref_primary_10_1061__ASCE_WR_1943_5452_0001453
crossref_primary_10_1109_TMTT_2024_3460106
crossref_primary_10_1177_1077546311404730
crossref_primary_10_1109_ACCESS_2020_2976700
crossref_primary_10_1109_TNNLS_2013_2294492
crossref_primary_10_1109_TSP_2020_3022827
crossref_primary_10_1007_s12204_009_0204_2
crossref_primary_10_1007_s00034_014_9861_y
crossref_primary_10_1109_TSP_2015_2468686
crossref_primary_10_3389_fninf_2018_00055
crossref_primary_10_1016_j_jphotobiol_2010_03_013
crossref_primary_10_1016_j_sigpro_2009_04_021
crossref_primary_10_1109_RBME_2012_2211076
crossref_primary_10_1007_s00034_013_9731_z
crossref_primary_10_1016_j_proeng_2012_01_107
crossref_primary_10_1016_j_neucom_2009_12_001
crossref_primary_10_1109_TNN_2006_880980
crossref_primary_10_3390_sym13020172
crossref_primary_10_1007_s40745_016_0068_x
crossref_primary_10_1007_s11517_015_1379_3
crossref_primary_10_1016_j_jneumeth_2017_03_008
crossref_primary_10_1007_s10921_011_0114_8
crossref_primary_10_1016_j_neucom_2013_07_047
crossref_primary_10_7554_eLife_90668
crossref_primary_10_1109_TNN_2007_914154
crossref_primary_10_1109_TSP_2018_2887185
crossref_primary_10_1155_2013_138057
crossref_primary_10_1016_j_jneumeth_2020_108638
crossref_primary_10_1198_004017008000000316
crossref_primary_10_1109_TNN_2007_891664
crossref_primary_10_1109_TSP_2009_2036049
crossref_primary_10_1080_2326263X_2020_1734401
crossref_primary_10_1109_JPROC_2015_2461624
crossref_primary_10_7554_eLife_90668_3
crossref_primary_10_1097_WNP_0b013e31821219f5
crossref_primary_10_1007_s00034_015_0078_5
crossref_primary_10_1016_j_sigpro_2018_05_017
crossref_primary_10_1002_wics_1550
crossref_primary_10_1155_2016_6203972
crossref_primary_10_1016_j_patcog_2017_10_006
crossref_primary_10_1109_TIFS_2012_2206386
crossref_primary_10_1109_TSP_2008_926104
crossref_primary_10_1016_j_compbiomed_2024_109430
crossref_primary_10_1109_TVLSI_2018_2886357
crossref_primary_10_1109_TSP_2010_2055859
crossref_primary_10_1109_TNN_2007_911747
crossref_primary_10_1049_iet_com_2010_0289
crossref_primary_10_1016_j_pnmrs_2014_06_002
crossref_primary_10_1016_j_neuroimage_2012_11_015
crossref_primary_10_1016_j_resuscitation_2010_08_034
crossref_primary_10_1515_revneuro_2016_0052
crossref_primary_10_1109_TIP_2007_906256
crossref_primary_10_1109_TSP_2015_2391071
crossref_primary_10_1016_j_bspc_2011_06_005
crossref_primary_10_1016_j_sigpro_2013_11_015
crossref_primary_10_1186_s13634_020_00697_0
crossref_primary_10_1109_JSTSP_2016_2594945
crossref_primary_10_1109_TSP_2014_2333563
crossref_primary_10_1007_s10548_016_0497_z
crossref_primary_10_1109_TCDS_2018_2889223
crossref_primary_10_1002_ima_22680
crossref_primary_10_1016_j_neuroimage_2009_03_018
crossref_primary_10_1109_TSP_2022_3216106
crossref_primary_10_1016_j_bspc_2019_01_017
crossref_primary_10_1016_j_dsp_2019_102611
crossref_primary_10_1007_s11042_017_5542_8
crossref_primary_10_1016_j_eswa_2009_04_054
crossref_primary_10_1109_TCSI_2010_2046207
crossref_primary_10_1155_2014_324750
crossref_primary_10_1016_j_inffus_2017_08_004
crossref_primary_10_1109_TNN_2009_2035920
crossref_primary_10_1016_j_dsp_2016_09_007
crossref_primary_10_1007_s00034_017_0554_1
crossref_primary_10_1515_bmt_2010_705
crossref_primary_10_1007_s11571_011_9161_1
crossref_primary_10_1109_TNN_2007_908636
crossref_primary_10_1109_TSP_2018_2844203
crossref_primary_10_1016_j_jvcir_2016_02_006
crossref_primary_10_1016_j_medengphy_2008_04_017
crossref_primary_10_1088_0004_637X_747_1_12
crossref_primary_10_1109_TNNLS_2015_2412686
crossref_primary_10_1109_TVT_2020_3004175
crossref_primary_10_3390_s17061447
crossref_primary_10_1093_comjnl_bxaa175
crossref_primary_10_1016_j_neuroimage_2008_07_032
crossref_primary_10_1007_s00704_014_1099_x
crossref_primary_10_1214_15_STS520
crossref_primary_10_1016_j_neuropsychologia_2023_108708
crossref_primary_10_1016_j_sigpro_2018_04_006
crossref_primary_10_1109_MSP_2013_2287951
crossref_primary_10_1016_j_sigpro_2020_107590
crossref_primary_10_1016_j_compbiomed_2025_110489
crossref_primary_10_1109_MSP_2014_2300511
crossref_primary_10_1002_acs_2702
crossref_primary_10_1002_hbm_26456
crossref_primary_10_1016_j_neucom_2008_08_014
crossref_primary_10_1016_j_pbiomolbio_2010_11_006
crossref_primary_10_1109_TSP_2024_3407162
crossref_primary_10_1016_j_sigpro_2011_03_009
crossref_primary_10_1371_journal_pone_0020227
crossref_primary_10_1109_TASL_2008_2011527
crossref_primary_10_1109_TASL_2010_2049411
crossref_primary_10_1109_LSP_2021_3135193
crossref_primary_10_1007_s00406_016_0721_6
crossref_primary_10_1109_TCSI_2016_2556122
crossref_primary_10_1016_j_neuroimage_2011_08_078
crossref_primary_10_1371_journal_pone_0093984
Cites_doi 10.1109/TNN.2003.820667
10.1109/78.752592
10.1109/SSP.2003.1289540
10.1109/SSP.2005.1628757
10.1016/0165-1684(94)90029-9
10.1109/TSP.2006.870561
10.1109/MWSCAS.2002.1186887
10.1049/ip-f-2.1993.0054
10.1109/TNN.2003.813843
10.1109/72.761722
10.1109/5.720250
10.1162/neco.1997.9.7.1483
10.1002/0471221317
10.1109/18.312156
10.1109/78.757233
10.1002/0470845899
10.1109/TSP.2004.834398
10.1109/78.599941
10.1002/9780470316436
10.1007/978-3-540-30110-3_22
10.1109/ICASSP.2006.1661415
10.1109/78.650095
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2006.875991
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
Technology Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 1277
ExternalDocumentID 17001986
18100830
10_1109_TNN_2006_875991
1687935
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c404t-9acb6a30ff360785b55f6ef81f01dbc7bcce8be53a88dfb2535c5bcc900d2b8e3
IEDL.DBID RIE
ISICitedReferencesCount 219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240511600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Fri Sep 05 12:39:42 EDT 2025
Fri Sep 05 05:13:42 EDT 2025
Wed Feb 19 01:43:47 EST 2025
Mon Jul 21 09:16:41 EDT 2025
Sat Nov 29 03:59:20 EST 2025
Tue Nov 18 22:00:29 EST 2025
Tue Aug 26 16:36:05 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Source separation
Cramér-Rao lower bound (CRB)
independent component analysis (ICA)
Independent component analysis
Error bound
Blind deconvolution
Neural network
Computational complexity
Algorithm FastICA
blind source separation
Algorithm analysis
Blind separation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-9acb6a30ff360785b55f6ef81f01dbc7bcce8be53a88dfb2535c5bcc900d2b8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17001986
PQID 68897530
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_68897530
crossref_primary_10_1109_TNN_2006_875991
crossref_citationtrail_10_1109_TNN_2006_875991
pascalfrancis_primary_18100830
pubmed_primary_17001986
ieee_primary_1687935
proquest_miscellaneous_896228951
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References porat (ref16) 1994
koldovsk (ref14) 0
cardoso (ref18) 1994
ref15
koldovsk (ref9) 2005; iii
ref11
ref10
ref2
ref1
ref17
ref19
learned-miller (ref12) 2004; 4
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref13) 0
ref28
ref27
ref8
ref7
ref3
ref6
ref5
rao (ref4) 1973
References_xml – ident: ref11
  doi: 10.1109/TNN.2003.820667
– year: 0
  ident: ref13
  publication-title: The FastICA MATLAB package
– ident: ref23
  doi: 10.1109/78.752592
– ident: ref27
  doi: 10.1109/SSP.2003.1289540
– ident: ref8
  doi: 10.1109/SSP.2005.1628757
– ident: ref1
  doi: 10.1016/0165-1684(94)90029-9
– ident: ref10
  doi: 10.1109/TSP.2006.870561
– ident: ref15
  doi: 10.1109/MWSCAS.2002.1186887
– ident: ref5
  doi: 10.1049/ip-f-2.1993.0054
– volume: 4
  start-page: 1271
  year: 2004
  ident: ref12
  article-title: ica using spacings estimates of entropy
  publication-title: J Mach Learn Res
– year: 1994
  ident: ref16
  publication-title: Digital Signal Processing of Random Signals
– ident: ref25
  doi: 10.1109/TNN.2003.813843
– ident: ref7
  doi: 10.1109/72.761722
– ident: ref17
  doi: 10.1109/5.720250
– ident: ref6
  doi: 10.1162/neco.1997.9.7.1483
– ident: ref2
  doi: 10.1002/0471221317
– ident: ref20
  doi: 10.1109/18.312156
– ident: ref19
  doi: 10.1109/78.757233
– volume: iii
  start-page: 581
  year: 2005
  ident: ref9
  article-title: cramr-rao lower bound for linear independent component analysis
  publication-title: Proc IEEE Int Conf Acoustics Speech and Signal Processing (ICASSP)
– ident: ref3
  doi: 10.1002/0470845899
– ident: ref22
  doi: 10.1109/TSP.2004.834398
– start-page: 776
  year: 1994
  ident: ref18
  article-title: on the performance of orthogonal source separation algorithms
  publication-title: Proc Euro Signal Processing Conf (EUSIPCO)
– ident: ref21
  doi: 10.1109/78.599941
– year: 1973
  ident: ref4
  publication-title: Linear Statistical Inference and its Applications
  doi: 10.1002/9780470316436
– ident: ref26
  doi: 10.1007/978-3-540-30110-3_22
– ident: ref28
  doi: 10.1109/ICASSP.2006.1661415
– ident: ref24
  doi: 10.1109/78.650095
– year: 0
  ident: ref14
  publication-title: The EFICA MATLAB code
SSID ssj0014506
Score 2.3500726
Snippet FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1265
SubjectTerms Algorithm FastICA
Algorithms
Applied sciences
Artificial Intelligence
Asymptotic properties
Automation
blind deconvolution
blind source separation
Computational complexity
Computational modeling
Computer science; control theory; systems
Computer Simulation
Computing Methodologies
Connectionism. Neural networks
CramÉr-Rao lower bound (CRB)
Data Interpretation, Statistical
Deconvolution
Errors
Exact sciences and technology
Independent component analysis
independent component analysis (ICA)
Information theory
Lower bounds
Matlab
Models, Statistical
Neural networks
Pattern Recognition, Automated - methods
Principal Component Analysis
Probability distribution
Signal processing
Signal processing algorithms
Signal Processing, Computer-Assisted
Speech
Title Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound
URI https://ieeexplore.ieee.org/document/1687935
https://www.ncbi.nlm.nih.gov/pubmed/17001986
https://www.proquest.com/docview/68897530
https://www.proquest.com/docview/896228951
Volume 17
WOSCitedRecordID wos000240511600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbaigMcKOzys0AXHxDiQFrnx4l9TFddUQmtECpob5Hj2KVSN6my2Uo8As_FizFjZ3dbqXvgZiWObWXG8oxn5vsI-QAnhNSqDIMs0VGQZFESlBHTATOV1hqpHaxyZBPZbCbmc_ltj3ze1MIYY1zymTnGpovlV41e4VXZSZgKUCe-T_azLPW1WpuIQcIdjyZ4FzyQUZT1MD4hkycXs5mPOoBtDuYQ4oRitFVi_fSdw8ixq2BupFrC77Ge12K34ekOoOnh_y39GXnaG5o095rxnOyZekCGeQ1O9uI3_Uhd6qe7Ux-QwzW3A-23-oA8uQNUOCTNmUOagCnoT3CuQRq0sTS_vmzaq-7Xgk7Vsjuf5BQsYHq-IdbtKI7b1Nhag5_QvOs8KQUF05NOWrX4-6cNvquGfkXCNnqKPE8vyI_p2cXkS9BTNQQ6YUkXSKXLVMXM2jgFo4OXnNvUWBFaFlalzkqtjSgNj5UQlS0jHnPN4aFkrIpKYeKX5KCG9bwmlAtpZSxYxdHXC6VKNQLShNzCcZtZNiLHa5kVuscxRzqN68L5M0wWIG9k10wLL-8R-bT54MZDeOzuOkTRbbt5qY3I-J5SbN8LxEaKYU3v11pSwPbEmIuqTbNaFqkQWLoMPeiOHkKmEXi9HCZ_5fVrO3yvpm8eXtZb8thfCGHG2zty0LUrc0Qe6dvuatmOYZPMxdhtkn9QkQ0b
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-NgcR4YNBuUP5sfkCIB7I5f5zYj6FatYoSIVTQ3iLHsWHSmqA0ReIj8Ln4YpydtB0SfeDNSi72KXeW73z27wfwClcIoWThe0mkAi9KgsgrAqo8qkullKV2MNKRTSRZxq-uxMc9eLu5C6O1dofP9Jltulp-WauV3So792OO7sTuwF0WRQHtbmttagYRc0yamF8wTwRB0gP5-FScz7OsqztgdI4BkUUKtfVWYW9Q31qOHL-KPR0pl_iDTMdssTv0dEvQ5PD_lH8ED_tQk6SdbzyGPV0NYJhWmGYvfpLXxB3-dLvqAzhcszuQfrIP4MEtqMIh1BcOawKHIF8wvUZ7kNqQ9OZr3Vy33xZkIpftdJwSjIHJdEOt2xLbb13Z1hr-hKRt29FSEAw-ybiRi9-_Gu-TrMnMUraRd5bp6Qg-Ty7m40uvJ2vwVESj1hNSFbEMqTFhjGEHKxgzsTbcN9QvC5UUSmleaBZKzktTBCxkiuFDQWkZFFyHx7BfoT5PgTAujAg5LZnN9nwhY2UhaXxmcMFNDB3B2dpmueqRzC2hxk3uMhoqcrS35deM887eI3iz-eB7B-KxW3RoTbcV66w2gpO_nGL7nlt0pBB1Ol17SY4T1FZdZKXr1TKPObeXl1GC7JDgIg4w72U4-JPOv7bd92767N9qncL9y_mHWT6bZu-fw0G3PWTPv72A_bZZ6ZdwT_1or5fNiZsqfwAUuw96
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+variant+of+algorithm+FastICA+for+independent+component+analysis+attaining+the+cram%C3%A9r-rao+lower+bound&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=KOLDOVSKY%2C+Zbynek&rft.au=TICHAVSKY%2C+Petr&rft.au=OJA%2C+Erkki&rft.date=2006-09-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=17&rft.issue=5&rft.spage=1265&rft.epage=1277&rft_id=info:doi/10.1109%2FTNN.2006.875991&rft.externalDBID=n%2Fa&rft.externalDocID=18100830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon