Generalized harmonic number summation formulae via hypergeometric series and digamma functions
By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers.
Uloženo v:
| Vydáno v: | Journal of difference equations and applications Ročník 23; číslo 7; s. 1204 - 1218 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.07.2017
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1023-6198, 1563-5120 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1023-6198 1563-5120 |
| DOI: | 10.1080/10236198.2017.1318861 |