Generalized harmonic number summation formulae via hypergeometric series and digamma functions

By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers.

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of difference equations and applications Ročník 23; číslo 7; s. 1204 - 1218
Hlavní autoři: Liu, Hongmei, Zhou, Wenshu, Ding, Shuyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.07.2017
Taylor & Francis Ltd
Témata:
ISSN:1023-6198, 1563-5120
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1023-6198
1563-5120
DOI:10.1080/10236198.2017.1318861