Generalized harmonic number summation formulae via hypergeometric series and digamma functions
By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers.
Gespeichert in:
| Veröffentlicht in: | Journal of difference equations and applications Jg. 23; H. 7; S. 1204 - 1218 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
03.07.2017
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1023-6198, 1563-5120 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1023-6198 1563-5120 |
| DOI: | 10.1080/10236198.2017.1318861 |