Generalized harmonic number summation formulae via hypergeometric series and digamma functions

By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of difference equations and applications Jg. 23; H. 7; S. 1204 - 1218
Hauptverfasser: Liu, Hongmei, Zhou, Wenshu, Ding, Shuyan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 03.07.2017
Taylor & Francis Ltd
Schlagworte:
ISSN:1023-6198, 1563-5120
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By computing the derivatives of five classical hypergeometric summation theorems, and applying the related properties of the digamma function, we derive a large number of closed summation formulae for generalized harmonic numbers.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1023-6198
1563-5120
DOI:10.1080/10236198.2017.1318861