A Concatenational Graph Evolution Aging Model

Modeling the long-term face aging process is of great importance for face recognition and animation, but there is a lack of sufficient long-term face aging sequences for model learning. To address this problem, we propose a CONcatenational GRaph Evolution (CONGRE) aging model, which adopts decomposi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 11; s. 2083 - 2096
Hlavní autoři: Suo, Jinli, Chen, Xilin, Shan, Shiguang, Gao, Wen, Dai, Qionghai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.11.2012
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Modeling the long-term face aging process is of great importance for face recognition and animation, but there is a lack of sufficient long-term face aging sequences for model learning. To address this problem, we propose a CONcatenational GRaph Evolution (CONGRE) aging model, which adopts decomposition strategy in both spatial and temporal aspects to learn long-term aging patterns from partially dense aging databases. In spatial aspect, we build a graphical face representation, in which a human face is decomposed into mutually interrelated subregions under anatomical guidance. In temporal aspect, the long-term evolution of the above graphical representation is then modeled by connecting sequential short-term patterns following the Markov property of aging process under smoothness constraints between neighboring short-term patterns and consistency constraints among subregions. The proposed model also considers the diversity of face aging by proposing probabilistic concatenation strategy between short-term patterns and applying scholastic sampling in aging prediction. In experiments, the aging prediction results generated by the learned aging models are evaluated both subjectively and objectively to validate the proposed model.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2012.22