Robust Object Tracking with Online Multiple Instance Learning

In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called "tracking by detection" has been shown to give promising results at real-time speeds. These methods train a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 33; číslo 8; s. 1619 - 1632
Hlavní autoři: Babenko, B., Ming-Hsuan Yang, Belongie, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.08.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called "tracking by detection" has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrade the classifier and can cause drift. In this paper, we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems and can therefore lead to a more robust tracker with fewer parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging video clips.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0162-8828
1939-3539
1939-3539
DOI:10.1109/TPAMI.2010.226