Simple Local Polynomial Density Estimators

This article introduces an intuitive and easy-to-implement nonparametric density estimator based on local polynomial techniques. The estimator is fully boundary adaptive and automatic, but does not require prebinning or any other transformation of the data. We study the main asymptotic properties of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 115; číslo 531; s. 1449 - 1455
Hlavní autori: Cattaneo, Matias D., Jansson, Michael, Ma, Xinwei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article introduces an intuitive and easy-to-implement nonparametric density estimator based on local polynomial techniques. The estimator is fully boundary adaptive and automatic, but does not require prebinning or any other transformation of the data. We study the main asymptotic properties of the estimator, and use these results to provide principled estimation, inference, and bandwidth selection methods. As a substantive application of our results, we develop a novel discontinuity in density testing procedure, an important problem in regression discontinuity designs and other program evaluation settings. An illustrative empirical application is given. Two companion Stata and R software packages are provided.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-1459
1537-274X
1537-274X
DOI:10.1080/01621459.2019.1635480