Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization
•Analytical solution for speed optimization of a single ship route.•Bi-section search for the optimal number of ships on a route.•Pseudo-polynomial-time algorithm for optimal speeds in a network. In container liner shipping, bunker cost is an important component of the total operating cost, and bunk...
Uložené v:
| Vydané v: | European journal of operational research Ročník 250; číslo 1; s. 46 - 55 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.04.2016
Elsevier Sequoia S.A |
| Predmet: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | •Analytical solution for speed optimization of a single ship route.•Bi-section search for the optimal number of ships on a route.•Pseudo-polynomial-time algorithm for optimal speeds in a network.
In container liner shipping, bunker cost is an important component of the total operating cost, and bunker consumption increases dramatically when the sailing speed of containerships increases. A higher speed implies higher bunker consumption (higher bunker cost), shorter transit time (lower inventory cost), and larger shipping capacity per ship per year (lower ship cost). Therefore, a container shipping company aims to determine the optimal sailing speed of containerships in a shipping network to minimize the total cost. We derive analytical solutions for sailing speed optimization on a single ship route with a continuous number of ships. The advantage of analytical solutions lies in that it unveils the underlying structure and properties of the problem, from which a number of valuable managerial insights can be obtained. Based on the analytical solution and the properties of the problem, the optimal integer number of ships to deploy on a ship route can be obtained by solving two equations, each in one unknown, using a simple bi-section search method. The properties further enable us to identify an optimality condition for network containership sailing speed optimization. Based on this optimality condition, we propose a pseudo-polynomial-time solution algorithm that can efficiently obtain an epsilon-optimal solution for sailing speed of containerships in a liner shipping network. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2015.10.052 |