Estimation of Probability Distribution and Its Application in Bayesian Classification and Maximum Likelihood Regression
Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challengi...
Saved in:
| Published in: | Interdisciplinary sciences : computational life sciences Vol. 11; no. 3; pp. 559 - 574 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1913-2751, 1867-1462, 1867-1462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1913-2751 1867-1462 1867-1462 |
| DOI: | 10.1007/s12539-019-00343-w |