Estimation of Probability Distribution and Its Application in Bayesian Classification and Maximum Likelihood Regression

Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challengi...

Full description

Saved in:
Bibliographic Details
Published in:Interdisciplinary sciences : computational life sciences Vol. 11; no. 3; pp. 559 - 574
Main Authors: Dai, Hao, Wang, Wei, Xu, Qin, Xiong, Yi, Wei, Dong-Qing
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects:
ISSN:1913-2751, 1867-1462, 1867-1462
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models.
AbstractList Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models.
Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models.Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models.
Author Wei, Dong-Qing
Xiong, Yi
Dai, Hao
Xu, Qin
Wang, Wei
Author_xml – sequence: 1
  givenname: Hao
  surname: Dai
  fullname: Dai, Hao
  organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-3734-3771
  surname: Wang
  fullname: Wang, Wei
  organization: School of Mathematical Sciences, Shanghai Jiao Tong University
– sequence: 3
  givenname: Qin
  surname: Xu
  fullname: Xu, Qin
  organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
– sequence: 4
  givenname: Yi
  surname: Xiong
  fullname: Xiong, Yi
  organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
– sequence: 5
  givenname: Dong-Qing
  surname: Wei
  fullname: Wei, Dong-Qing
  email: dqwei@sjtu.edu.cn
  organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31317443$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1vFCEYhYmpsR_6B7wwJN54M8rnMFzWta1N1miMXhNgmEqdgRWYrPvvpTvdmPRiLwiE9zlvTs45BychBgfAa4zeY4TEh4wJp7JBuB5EGW22z8AZ7lrRYNaSk_qWmDZEcHwKznO-R6hlHUUvwCnFFAvG6BnYXuXiJ118DDAO8FuKRhs_-rKDn3wuyZt5P9Ohh7clw8vNZvR24X2AH_XOZa8DXI06Zz8cRg_4F_3XT_ME1_63G_2vGHv43d0lV7kYXoLngx6ze_V4X4Cf11c_Vp-b9deb29XlurEM0dL0RkhhGcVc244bpEXHaWdE32OhJTXM8EEbZ6ylvZPEVZwY3aL6N7ABt_QCvFv2blL8M7tc1OSzdeOog4tzVoRwKQltmazo2yfofZxTqO4q1dZEhWjRcYpLjKthXqk3j9RsJterTaohp506BF-BbgFsijknNyjryz67krQfFUbqoWO1dKxqx2rfsdpWKXkiPWw_KqKLKFc43Ln03_YR1T8aLbrS
CitedBy_id crossref_primary_10_1109_TVT_2023_3267793
crossref_primary_10_1007_s00500_021_05853_8
crossref_primary_10_1016_j_jvs_2021_08_091
crossref_primary_10_3233_JIFS_201993
Cites_doi 10.1002/9780470430583
10.1214/aoms/1177728190
10.1016/0167-7152(92)90003-N
10.1007/978-1-4612-6333-3
10.1007/BF02162161
10.1007/978-1-4613-2279-5
10.1145/1143844.1143865
10.1080/01621459.1990.10476223
10.1109/34.494647
10.1109/LCOMM.2006.1603370
10.1109/ICASSP.2015.7178633
10.1109/CISP.2009.5300813
10.1214/aoms/1177698795
10.1109/TPAMI.2003.1233899
10.1080/00401706.1974.10489142
10.1016/S0167-4730(98)00019-8
10.1214/aoms/1177704472
10.1109/34.310693
10.1007/978-1-4899-3324-9
ContentType Journal Article
Copyright International Association of Scientists in the Interdisciplinary Areas 2019
Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2019). All Rights Reserved.
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: International Association of Scientists in the Interdisciplinary Areas 2019
– notice: Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2019). All Rights Reserved.
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0K
M0S
M1P
M7P
P5Z
P62
P64
PATMY
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7X8
DOI 10.1007/s12539-019-00343-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE
Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 574
ExternalDocumentID 31317443
10_1007_s12539_019_00343_w
Genre Journal Article
GrantInformation_xml – fundername: Young Scholars of Natural Science Foundation of People's Republic of China (CN)
  grantid: 31400704
– fundername: Ph.D. Programs Foundation of Ministry of Education of People's Republic of China (CN)
  grantid: 20120073110057
– fundername: National High-Tech R&D Program of People's Republic of China (CN)
  grantid: 2012AA020307
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0501703
  funderid: http://dx.doi.org/10.13039/501100002855
– fundername: National Basic Research Program of People's Republic of China(CN)
  grantid: 2012CB721000
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0501703
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X7
8CJ
8FH
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
D1J
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
HCIFZ
HG6
HLICF
HMJXF
HQYDN
HRMNR
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M0K
M4Y
M7P
NPVJJ
NQJWS
NU0
O9J
PATMY
PROAC
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
2VQ
7X2
7XC
88E
8FE
8FG
8FI
8FJ
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABRTQ
ABUWG
AEBTG
AEUYN
AFDZB
AFFHD
AFKRA
AFLOW
AFOHR
AGJBK
AHPBZ
AHSBF
AJBLW
ATHPR
AYFIA
BGLVJ
BKSAR
BVXVI
CAG
CCPQU
CITATION
COF
D1K
FINBP
FSGXE
H13
HF~
HMCUK
HZ~
K6-
K7-
LK5
LK8
M1P
M7R
O9-
P62
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PSQYO
S1Z
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c403t-db797c4315ac85b0a78538b7dd17a93b4b5fabebcc3de92eb792ba60abef4f163
IEDL.DBID M7P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477629000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1913-2751
1867-1462
IngestDate Thu Oct 02 07:49:41 EDT 2025
Thu Dec 04 04:06:56 EST 2025
Sat Nov 29 14:25:49 EST 2025
Thu Apr 03 07:05:07 EDT 2025
Tue Nov 18 22:35:36 EST 2025
Sat Nov 29 03:36:28 EST 2025
Fri Feb 21 02:33:13 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Distribution function estimation
Density function estimation
Bayesian classification
Spline regression
Smoothing spline
Maximum likelihood regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-db797c4315ac85b0a78538b7dd17a93b4b5fabebcc3de92eb792ba60abef4f163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3734-3771
PMID 31317443
PQID 2259117975
PQPubID 326319
PageCount 16
ParticipantIDs proquest_miscellaneous_2259923649
proquest_journals_2264627760
proquest_journals_2259117975
pubmed_primary_31317443
crossref_citationtrail_10_1007_s12539_019_00343_w
crossref_primary_10_1007_s12539_019_00343_w
springer_journals_10_1007_s12539_019_00343_w
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat195627383283710.1214/aoms/1177728190
Rennie JDM, Shih L, Teevan J, Karger D (2003) Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the twentieth international conference on machine learning, Washington, DC, USA
SilvermanBWDensity estimation for statistics and data analysis1986LondonChapman & Hall10.1007/978-1-4899-3324-9
Howard RM (2010) PDF estimation via characteristic function and an orthonormal basis set. In: Wseas international conference on systems
PfanzaglJHambökerRParametric statistical theoryJ Am Stat Assoc199691433269287
ParzenEOn estimation of probability density function and modeAnn Math Stat19623331065107610.1214/aoms/1177704472
SchwartzSCEstimation of probability density by an orthogonal seriesAnn Math Stat19673841261126510.1214/aoms/1177698795
MarshLCormierDRSpline regression modelsJ R Stat Soc20025234958
MoodAMGraybillFABoesDCIntroduction to the theory of statistics19743New YorkMcGraw-Hill Education
VannucciMNonparametric density estimation using wavelets; Discussion Paper 95–26, ISDS1998DurhamDuke University
BowersNLExpansion of probability density functions as a sum of gamma densities with applications in risk theoryTrans Soc Actuar196618 PT.152125147
Van KhuongHKongHYGeneral expression for pdf of a sum of independent exponential random variablesIEEE Commun Lett200610315916110.1109/LCOMM.2006.1603370
De BoorCA practical guide to splines1978New YorkSpringer10.1007/978-1-4612-6333-3
BishopCMNeural networks for pattern recognition1996New YorkOxford University Press
CandyJVBayesian signal processing: classical, modern and particle filtering methods2009New YorkWiley-Interscience10.1002/9780470430583
GirolamiMHeCProbability density estimation from optimally condensed data samplesIEEE Trans Pattern Anal Mach Intell200325101253126410.1109/TPAMI.2003.1233899
JeonBLandgrebeDAFast Parzen density estimation using clustering-based branch andboundIEEE Trans Pattern Anal Mach Intell199416995095410.1109/34.310693
Xie J, Wang Z (2009) Probability density function estimation based on windowed fourier transform of characteristic function. In: International congress on image and signal processing
EngelJDensity estimation with Haar seriesStat Probab Lett19909211111710.1016/0167-7152(92)90003-N
BabichGACampsOIWeighted Parzen windows for pattern classificationIEEE Trans Pattern Anal Mach Intell199618556757010.1109/34.494647
Kitahara D, Yamada I (2015) Probability density function estimation by positive quartic C 2 -spline functions. In: IEEE international conference on acoustics, speech and signal processing
AlexandreLAA solve-the-equation approach for unidimensional data kernel bandwidth selection2008CovilhãUniversity of Beira Interior
MansourAMeslehRAggouneEHMBlind estimation of statistical properties of non-stationary random variablesJ Adv Signal Process2015511309314
ZongZLamKYEstimation of complicated distributions using B-spline functionsStruct Saf199820434135510.1016/S0167-4730(98)00019-8
TerrellGRThe maximal smoothing principle in density estimationJ Am Stat Assoc19908541047047710.1080/01621459.1990.10476223
MitchellTMCarbonellJGMichalskiRSMachine learning: a guide to current research1986NorwellKluwer Academic Publishers10.1007/978-1-4613-2279-5
Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, Pittsburgh, PA, USA
WoldSSpline functions in data analysisTechnometrics197416111110.1080/00401706.1974.10489142
ReinschCHSmoothing by spline functionsNumer Math196710317718310.1007/BF02162161
Zhang H (2005) The optimality of Naive Bayes. In: Seventeenth international florida artificial intelligence research society conference, Miami Beach, Florida, USA
343_CR18
TM Mitchell (343_CR3) 1986
343_CR19
AM Mood (343_CR4) 1974
LA Alexandre (343_CR9) 2008
E Parzen (343_CR6) 1962; 33
JV Candy (343_CR1) 2009
Z Zong (343_CR23) 1998; 20
A Mansour (343_CR24) 2015; 51
H Van Khuong (343_CR14) 2006; 10
BW Silverman (343_CR7) 1986
CH Reinsch (343_CR21) 1967; 10
B Jeon (343_CR10) 1994; 16
J Engel (343_CR16) 1990; 9
343_CR25
NL Bowers (343_CR13) 1966; 18 PT.1
SC Schwartz (343_CR15) 1967; 38
343_CR27
343_CR29
343_CR28
GA Babich (343_CR11) 1996; 18
M Vannucci (343_CR17) 1998
C De Boor (343_CR26) 1978
J Pfanzagl (343_CR30) 1996; 91
M Rosenblatt (343_CR5) 1956; 27
M Girolami (343_CR12) 2003; 25
L Marsh (343_CR22) 2002; 52
S Wold (343_CR20) 1974; 16
GR Terrell (343_CR8) 1990; 85
CM Bishop (343_CR2) 1996
References_xml – reference: ParzenEOn estimation of probability density function and modeAnn Math Stat19623331065107610.1214/aoms/1177704472
– reference: MarshLCormierDRSpline regression modelsJ R Stat Soc20025234958
– reference: Van KhuongHKongHYGeneral expression for pdf of a sum of independent exponential random variablesIEEE Commun Lett200610315916110.1109/LCOMM.2006.1603370
– reference: AlexandreLAA solve-the-equation approach for unidimensional data kernel bandwidth selection2008CovilhãUniversity of Beira Interior
– reference: SchwartzSCEstimation of probability density by an orthogonal seriesAnn Math Stat19673841261126510.1214/aoms/1177698795
– reference: Zhang H (2005) The optimality of Naive Bayes. In: Seventeenth international florida artificial intelligence research society conference, Miami Beach, Florida, USA
– reference: BowersNLExpansion of probability density functions as a sum of gamma densities with applications in risk theoryTrans Soc Actuar196618 PT.152125147
– reference: TerrellGRThe maximal smoothing principle in density estimationJ Am Stat Assoc19908541047047710.1080/01621459.1990.10476223
– reference: Xie J, Wang Z (2009) Probability density function estimation based on windowed fourier transform of characteristic function. In: International congress on image and signal processing
– reference: Howard RM (2010) PDF estimation via characteristic function and an orthonormal basis set. In: Wseas international conference on systems
– reference: SilvermanBWDensity estimation for statistics and data analysis1986LondonChapman & Hall10.1007/978-1-4899-3324-9
– reference: De BoorCA practical guide to splines1978New YorkSpringer10.1007/978-1-4612-6333-3
– reference: MansourAMeslehRAggouneEHMBlind estimation of statistical properties of non-stationary random variablesJ Adv Signal Process2015511309314
– reference: JeonBLandgrebeDAFast Parzen density estimation using clustering-based branch andboundIEEE Trans Pattern Anal Mach Intell199416995095410.1109/34.310693
– reference: BabichGACampsOIWeighted Parzen windows for pattern classificationIEEE Trans Pattern Anal Mach Intell199618556757010.1109/34.494647
– reference: Rennie JDM, Shih L, Teevan J, Karger D (2003) Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the twentieth international conference on machine learning, Washington, DC, USA
– reference: BishopCMNeural networks for pattern recognition1996New YorkOxford University Press
– reference: ReinschCHSmoothing by spline functionsNumer Math196710317718310.1007/BF02162161
– reference: VannucciMNonparametric density estimation using wavelets; Discussion Paper 95–26, ISDS1998DurhamDuke University
– reference: ZongZLamKYEstimation of complicated distributions using B-spline functionsStruct Saf199820434135510.1016/S0167-4730(98)00019-8
– reference: WoldSSpline functions in data analysisTechnometrics197416111110.1080/00401706.1974.10489142
– reference: MoodAMGraybillFABoesDCIntroduction to the theory of statistics19743New YorkMcGraw-Hill Education
– reference: PfanzaglJHambökerRParametric statistical theoryJ Am Stat Assoc199691433269287
– reference: EngelJDensity estimation with Haar seriesStat Probab Lett19909211111710.1016/0167-7152(92)90003-N
– reference: MitchellTMCarbonellJGMichalskiRSMachine learning: a guide to current research1986NorwellKluwer Academic Publishers10.1007/978-1-4613-2279-5
– reference: RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat195627383283710.1214/aoms/1177728190
– reference: Kitahara D, Yamada I (2015) Probability density function estimation by positive quartic C 2 -spline functions. In: IEEE international conference on acoustics, speech and signal processing
– reference: CandyJVBayesian signal processing: classical, modern and particle filtering methods2009New YorkWiley-Interscience10.1002/9780470430583
– reference: GirolamiMHeCProbability density estimation from optimally condensed data samplesIEEE Trans Pattern Anal Mach Intell200325101253126410.1109/TPAMI.2003.1233899
– reference: Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, Pittsburgh, PA, USA
– volume-title: Nonparametric density estimation using wavelets; Discussion Paper 95–26, ISDS
  year: 1998
  ident: 343_CR17
– volume-title: Bayesian signal processing: classical, modern and particle filtering methods
  year: 2009
  ident: 343_CR1
  doi: 10.1002/9780470430583
– volume: 27
  start-page: 832
  issue: 3
  year: 1956
  ident: 343_CR5
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177728190
– volume: 52
  start-page: 49
  issue: 3
  year: 2002
  ident: 343_CR22
  publication-title: J R Stat Soc
– volume: 9
  start-page: 111
  issue: 2
  year: 1990
  ident: 343_CR16
  publication-title: Stat Probab Lett
  doi: 10.1016/0167-7152(92)90003-N
– volume-title: A practical guide to splines
  year: 1978
  ident: 343_CR26
  doi: 10.1007/978-1-4612-6333-3
– volume: 10
  start-page: 177
  issue: 3
  year: 1967
  ident: 343_CR21
  publication-title: Numer Math
  doi: 10.1007/BF02162161
– ident: 343_CR28
– volume-title: Machine learning: a guide to current research
  year: 1986
  ident: 343_CR3
  doi: 10.1007/978-1-4613-2279-5
– ident: 343_CR27
– ident: 343_CR29
  doi: 10.1145/1143844.1143865
– volume-title: Introduction to the theory of statistics
  year: 1974
  ident: 343_CR4
– volume: 85
  start-page: 470
  issue: 410
  year: 1990
  ident: 343_CR8
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1990.10476223
– volume: 18
  start-page: 567
  issue: 5
  year: 1996
  ident: 343_CR11
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.494647
– volume: 10
  start-page: 159
  issue: 3
  year: 2006
  ident: 343_CR14
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2006.1603370
– ident: 343_CR25
  doi: 10.1109/ICASSP.2015.7178633
– volume: 91
  start-page: 269
  issue: 433
  year: 1996
  ident: 343_CR30
  publication-title: J Am Stat Assoc
– ident: 343_CR19
  doi: 10.1109/CISP.2009.5300813
– volume: 38
  start-page: 1261
  issue: 4
  year: 1967
  ident: 343_CR15
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177698795
– volume: 25
  start-page: 1253
  issue: 10
  year: 2003
  ident: 343_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2003.1233899
– volume: 51
  start-page: 309
  issue: 1
  year: 2015
  ident: 343_CR24
  publication-title: J Adv Signal Process
– volume: 18 PT.1
  start-page: 125
  issue: 52
  year: 1966
  ident: 343_CR13
  publication-title: Trans Soc Actuar
– volume: 16
  start-page: 1
  issue: 1
  year: 1974
  ident: 343_CR20
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489142
– volume: 20
  start-page: 341
  issue: 4
  year: 1998
  ident: 343_CR23
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(98)00019-8
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 343_CR6
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704472
– volume-title: Neural networks for pattern recognition
  year: 1996
  ident: 343_CR2
– ident: 343_CR18
– volume: 16
  start-page: 950
  issue: 9
  year: 1994
  ident: 343_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.310693
– volume-title: A solve-the-equation approach for unidimensional data kernel bandwidth selection
  year: 2008
  ident: 343_CR9
– volume-title: Density estimation for statistics and data analysis
  year: 1986
  ident: 343_CR7
  doi: 10.1007/978-1-4899-3324-9
SSID ssj0064830
Score 2.1517096
Snippet Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 559
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Biomedical and Life Sciences
Classification
Computational Biology - methods
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Computer simulation
Continuity (mathematics)
Distribution functions
Economic models
Health Sciences
Life Sciences
Likelihood Functions
Mathematical and Computational Physics
Mathematical models
Maximum likelihood estimation
Medicine
Models, Statistical
Monte Carlo simulation
Numerical methods
Original Research Article
Probability
Probability density functions
Probability distribution
Probability theory
Random variables
Regression Analysis
Regression models
Research Design
Spline functions
Statistical analysis
Statistical methods
Statistics for Life Sciences
Statistics, Nonparametric
Theoretical
Theoretical and Computational Chemistry
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xsiFegHWwFRgy0t62SGmc2PFjgSKQBkJlm_oW2Y6DIiCd-rHS_56zk7RCpZO2h7zYF-tk3_nOurvfAXzBdyxlmqceiyJbksOpJ7Mg9XCcKW1NhFKu2QS_vo77fXFTFYWN6mz3OiTpbupFsVsQUZvbg59PQ-pN38A6mrvYNmzo3f6q718Wxq7DCD5EqBfwqF2Vyry-xktztORjLsVHndk53_4_hndgq3IzSaeUi_ewZoomvCsbT86asHFVhdQ_wLSLSl7WL5JBRm6GqOAuYXZGziyobtUPi8giJZfjEeksIt4kL8iJnBlbh0lcd02bdyTn5FfyKX-cPJLv-b15yC1-MumZuzLxttiFn-fdH6cXXtWNwdOhT8deqrjgGv2NSOo4Ur7kaOljxdO0zaWgKlRRJpVRWtPUiMAgeaAk83EsCzN0-_agUQwK8wlIrC1uoM6ENY6KK4E-q_EZuqIyYEb4LWjXh5LoCqrcdsx4SBYgy3ZvE9zbxO1tMm3B1_k_v0ugjr9SH9ZnnVRKO0rwahMWIY9HK6ZZyALOGfJ3PJ9GbbQhFlmYwaRcQlhMftGCj6UIzbmhbfTVwpC24FstL4vFV7O6_2_kB7AZOJGzkncIjfFwYj7DW_1nnI-GR05TngFzeg1Z
  priority: 102
  providerName: Springer Nature
Title Estimation of Probability Distribution and Its Application in Bayesian Classification and Maximum Likelihood Regression
URI https://link.springer.com/article/10.1007/s12539-019-00343-w
https://www.ncbi.nlm.nih.gov/pubmed/31317443
https://www.proquest.com/docview/2259117975
https://www.proquest.com/docview/2264627760
https://www.proquest.com/docview/2259923649
Volume 11
WOSCitedRecordID wos000477629000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: RSV
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-B4URmUk3sAijRM7eUIbdAKNVVH5UMVLZDsOitjS0Q9K_3vunKQVmrYXHmqpiRNddHe-S3z3-wG8xPdYIa0quIxjaslRgusyLDgel8ZSiDDGk02o0SiZTNKs_eA2b8squzXRL9TF1NI38jdodynBl6n47cUvTqxRtLvaUmjswB6hJIS-dC_rVmIZJZ5rBF9JBA9VPGibZprWuTAWVCmEv0BEgq_-DUyXss1LO6U-AB3f_V_R78GdNvVkh42t3Icbrn4AtxoyyvVDWA3R25tGRjYtWTZDT_eVs2v2ntB1W2IspuuCfVzM2eF265tVNTvSa0cNmczTbFIBkt5MP9V_qvPlOftU_XRnFQEps7H70VTg1o_g6_Hwy7sPvKVl4DYKxIIXBh_FYuIRa5vEJtAKQ35iVFEMlE6FiUxcauOMtaJwaehwemi0DPBYGZWY_-3Dbj2t3RNgiSUAQVumFCWNMikmry6QmJPqULo06MGg00luW8xyos44y7doy6THHPWYez3mqx682lxz0SB2XDv7oNNZ3nrvPN8q7IrTMpKhUhLle7E5jW5Jey26dtNlc4uUwPnTHjxuLGgjjRhg0hZFogevO5Pa3vxqUZ9eL-ozuB16cyarPoDdxWzpnsNN-3tRzWd92FET5cekD3tHw1E2xn8niuN4Gpz0vePgmMXfcRx__vYX5msarA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o-FAkaCE1hk7cRODggV2qqr3a4qVKTeUttxqog2W_bBsn-K38hMHrtCVXvrgUMutmM5yTcPxzPzAbzFfaxUTmdcRRGl5GjJTS4yju3KOjIR1lZkE3o4jI-OkoM1-NPmwlBYZasTK0WdjRz9I_-IuEuofJmOPp__5MQaRaerLYVGDYu-X8xxyzb51NvG7_tOiN2dw697vGEV4C4M5JRnFidxaDcj4-LIBkajxYqtzrKuNom0oY1yY711TmY-ER6HC2tUgG15mKP7gvPegJuhjDXJVV_zVvOrMK64TXALJLnQUbdJ0qlT9UQkKTIJr0CGks__NYQXvNsLJ7OVwdu997-9qvtwt3Gt2VYtCw9gzZcP4XZNtrl4BPMd1GZ1oiYb5exgjJqsigxesG2qHtwQfzFTZqw3nbCt1dE-K0r2xSw8JZyyikaUAqzMcvi--V2czc7YoPjhTwsqFM2--ZM6wrh8DN-v5amfwHo5Kv0zYLGjAokuT8gLsNom6Jz7QKHPbYTySdCBbouB1DU12Yka5DRdVZMm3KSIm7TCTTrvwPvlPed1RZIrR2-2GEkb7TRJVwC5pFuFSmitcH1vlt2odugsyZR-NKunSIh8IOnA0xqxy9XILjqlYSg78KGF8Gryy5f6_OqlvoaNvcP9QTroDfsv4I6oRIkkahPWp-OZfwm33K9pMRm_qoSSwfF1Q_svuKtzoA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BgIkXPgbbCgOMxBtES2PHjh_HtoqJrar40t4i23FQtC2d2pTS_567fLRDY0iIh7zYF-tk3_nOurvfAbzBdyyXTmWBjGMqyVE8MHmUBTgurSMTYW3dbEINh8npqR5dqeKvs927kGRT00AoTWW1e5nlu6vCtyjmlOeDX8gFD-a34Y6gRHp6r3_-1t3FUiR1txF8lPAgUnG_LZv58xq_m6Zr_ua1WGltggYP_5_5R_CgdT_ZXiMvj-GWLzfgXtOQcrEB6ydtqP0JzA9R-Zu6RjbO2WiCil8n0i7YAYHttn2ymCkzdlRN2d4qEs6Kkr03C0_1mazuukn5SGZJfmJ-FhezC3ZcnPnzgnCV2Sf_vUnILZ_C18Hhl_0PQdulIXAi5FWQWaWVQz8kNi6JbWgUegCJVVnWV0ZzK2ycG-utczzzOvJIHlkjQxzLRY7u4CaslePSbwNLHOEJulyT0bTKavRlfSjRRTWR9DrsQb87oNS1EObUSeM8XYEv096muLdpvbfpvAdvl_9cNgAef6Xe6c49bZV5muKVpwk5T8U3TEshI6Uk8vd6OY1aSqEXU_rxrFlCE1a_7sFWI05LbngffTgheA_edbKzWvxmVp_9G_krWB8dDNLjo-HH53A_qqWPhHAH1qrJzL-Au-5HVUwnL2sF-gVsPRkh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Probability+Distribution+and+Its+Application+in+Bayesian+Classification+and+Maximum+Likelihood+Regression&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Dai%2C+Hao&rft.au=Wang%2C+Wei&rft.au=Xu%2C+Qin&rft.au=Xiong%2C+Yi&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1913-2751&rft.eissn=1867-1462&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs12539-019-00343-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon