Estimation of Probability Distribution and Its Application in Bayesian Classification and Maximum Likelihood Regression
Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challengi...
Saved in:
| Published in: | Interdisciplinary sciences : computational life sciences Vol. 11; no. 3; pp. 559 - 574 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1913-2751, 1867-1462, 1867-1462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models. |
|---|---|
| AbstractList | Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models. Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models.Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in probability theory and statistics. Although many methods such as kernel density estimation have been presented, it is still quite a challenging problem to be addressed to researchers. In this paper, we proposed a new method of spline regression, in which the spline function could consist of totally different types of functions for each segment with the result of Monte Carlo simulation. Based on the new spline regression, a new method to estimate the distribution and density function was provided, which showed significant advantages over the existing methods in the numerical experiments. Finally, the density function estimation of high dimensional random variables was discussed. It has shown the potential to apply the method in classification and regression models. |
| Author | Wei, Dong-Qing Xiong, Yi Dai, Hao Xu, Qin Wang, Wei |
| Author_xml | – sequence: 1 givenname: Hao surname: Dai fullname: Dai, Hao organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences – sequence: 2 givenname: Wei orcidid: 0000-0003-3734-3771 surname: Wang fullname: Wang, Wei organization: School of Mathematical Sciences, Shanghai Jiao Tong University – sequence: 3 givenname: Qin surname: Xu fullname: Xu, Qin organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 4 givenname: Yi surname: Xiong fullname: Xiong, Yi organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 5 givenname: Dong-Qing surname: Wei fullname: Wei, Dong-Qing email: dqwei@sjtu.edu.cn organization: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Jiao Tong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31317443$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1vFCEYhYmpsR_6B7wwJN54M8rnMFzWta1N1miMXhNgmEqdgRWYrPvvpTvdmPRiLwiE9zlvTs45BychBgfAa4zeY4TEh4wJp7JBuB5EGW22z8AZ7lrRYNaSk_qWmDZEcHwKznO-R6hlHUUvwCnFFAvG6BnYXuXiJ118DDAO8FuKRhs_-rKDn3wuyZt5P9Ohh7clw8vNZvR24X2AH_XOZa8DXI06Zz8cRg_4F_3XT_ME1_63G_2vGHv43d0lV7kYXoLngx6ze_V4X4Cf11c_Vp-b9deb29XlurEM0dL0RkhhGcVc244bpEXHaWdE32OhJTXM8EEbZ6ylvZPEVZwY3aL6N7ABt_QCvFv2blL8M7tc1OSzdeOog4tzVoRwKQltmazo2yfofZxTqO4q1dZEhWjRcYpLjKthXqk3j9RsJterTaohp506BF-BbgFsijknNyjryz67krQfFUbqoWO1dKxqx2rfsdpWKXkiPWw_KqKLKFc43Ln03_YR1T8aLbrS |
| CitedBy_id | crossref_primary_10_1109_TVT_2023_3267793 crossref_primary_10_1007_s00500_021_05853_8 crossref_primary_10_1016_j_jvs_2021_08_091 crossref_primary_10_3233_JIFS_201993 |
| Cites_doi | 10.1002/9780470430583 10.1214/aoms/1177728190 10.1016/0167-7152(92)90003-N 10.1007/978-1-4612-6333-3 10.1007/BF02162161 10.1007/978-1-4613-2279-5 10.1145/1143844.1143865 10.1080/01621459.1990.10476223 10.1109/34.494647 10.1109/LCOMM.2006.1603370 10.1109/ICASSP.2015.7178633 10.1109/CISP.2009.5300813 10.1214/aoms/1177698795 10.1109/TPAMI.2003.1233899 10.1080/00401706.1974.10489142 10.1016/S0167-4730(98)00019-8 10.1214/aoms/1177704472 10.1109/34.310693 10.1007/978-1-4899-3324-9 |
| ContentType | Journal Article |
| Copyright | International Association of Scientists in the Interdisciplinary Areas 2019 Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2019). All Rights Reserved. Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: International Association of Scientists in the Interdisciplinary Areas 2019 – notice: Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2019). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X2 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0K M0S M1P M7P P5Z P62 P64 PATMY PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY 7X8 |
| DOI | 10.1007/s12539-019-00343-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Agricultural Science Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Biotechnology Research Abstracts MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1867-1462 |
| EndPage | 574 |
| ExternalDocumentID | 31317443 10_1007_s12539_019_00343_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Young Scholars of Natural Science Foundation of People's Republic of China (CN) grantid: 31400704 – fundername: Ph.D. Programs Foundation of Ministry of Education of People's Republic of China (CN) grantid: 20120073110057 – fundername: National High-Tech R&D Program of People's Republic of China (CN) grantid: 2012AA020307 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0501703 funderid: http://dx.doi.org/10.13039/501100002855 – fundername: National Basic Research Program of People's Republic of China(CN) grantid: 2012CB721000 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0501703 |
| GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 29~ 2KG 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 67N 6NX 7X7 8CJ 8FH 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APEBS ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BA0 BBNVY BENPR BGNMA BHPHI BPHCQ D1J DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FYJPI FYUFA G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS HCIFZ HG6 HLICF HMJXF HQYDN HRMNR I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ KOV LLZTM M0K M4Y M7P NPVJJ NQJWS NU0 O9J PATMY PROAC PT4 PYCSY Q2X QOR QOS R89 RLLFE ROL RSV S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 2VQ 7X2 7XC 88E 8FE 8FG 8FI 8FJ AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABRTQ ABUWG AEBTG AEUYN AFDZB AFFHD AFKRA AFLOW AFOHR AGJBK AHPBZ AHSBF AJBLW ATHPR AYFIA BGLVJ BKSAR BVXVI CAG CCPQU CITATION COF D1K FINBP FSGXE H13 HF~ HMCUK HZ~ K6- K7- LK5 LK8 M1P M7R O9- P62 PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PSQYO S1Z UKHRP CGR CUY CVF ECM EIF NPM 7QO 7SC 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI 7X8 |
| ID | FETCH-LOGICAL-c403t-db797c4315ac85b0a78538b7dd17a93b4b5fabebcc3de92eb792ba60abef4f163 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477629000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1913-2751 1867-1462 |
| IngestDate | Thu Oct 02 07:49:41 EDT 2025 Thu Dec 04 04:06:56 EST 2025 Sat Nov 29 14:25:49 EST 2025 Thu Apr 03 07:05:07 EDT 2025 Tue Nov 18 22:35:36 EST 2025 Sat Nov 29 03:36:28 EST 2025 Fri Feb 21 02:33:13 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Distribution function estimation Density function estimation Bayesian classification Spline regression Smoothing spline Maximum likelihood regression |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-db797c4315ac85b0a78538b7dd17a93b4b5fabebcc3de92eb792ba60abef4f163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3734-3771 |
| PMID | 31317443 |
| PQID | 2259117975 |
| PQPubID | 326319 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2259923649 proquest_journals_2264627760 proquest_journals_2259117975 pubmed_primary_31317443 crossref_citationtrail_10_1007_s12539_019_00343_w crossref_primary_10_1007_s12539_019_00343_w springer_journals_10_1007_s12539_019_00343_w |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Bromont |
| PublicationTitle | Interdisciplinary sciences : computational life sciences |
| PublicationTitleAbbrev | Interdiscip Sci Comput Life Sci |
| PublicationTitleAlternate | Interdiscip Sci |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat195627383283710.1214/aoms/1177728190 Rennie JDM, Shih L, Teevan J, Karger D (2003) Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the twentieth international conference on machine learning, Washington, DC, USA SilvermanBWDensity estimation for statistics and data analysis1986LondonChapman & Hall10.1007/978-1-4899-3324-9 Howard RM (2010) PDF estimation via characteristic function and an orthonormal basis set. In: Wseas international conference on systems PfanzaglJHambökerRParametric statistical theoryJ Am Stat Assoc199691433269287 ParzenEOn estimation of probability density function and modeAnn Math Stat19623331065107610.1214/aoms/1177704472 SchwartzSCEstimation of probability density by an orthogonal seriesAnn Math Stat19673841261126510.1214/aoms/1177698795 MarshLCormierDRSpline regression modelsJ R Stat Soc20025234958 MoodAMGraybillFABoesDCIntroduction to the theory of statistics19743New YorkMcGraw-Hill Education VannucciMNonparametric density estimation using wavelets; Discussion Paper 95–26, ISDS1998DurhamDuke University BowersNLExpansion of probability density functions as a sum of gamma densities with applications in risk theoryTrans Soc Actuar196618 PT.152125147 Van KhuongHKongHYGeneral expression for pdf of a sum of independent exponential random variablesIEEE Commun Lett200610315916110.1109/LCOMM.2006.1603370 De BoorCA practical guide to splines1978New YorkSpringer10.1007/978-1-4612-6333-3 BishopCMNeural networks for pattern recognition1996New YorkOxford University Press CandyJVBayesian signal processing: classical, modern and particle filtering methods2009New YorkWiley-Interscience10.1002/9780470430583 GirolamiMHeCProbability density estimation from optimally condensed data samplesIEEE Trans Pattern Anal Mach Intell200325101253126410.1109/TPAMI.2003.1233899 JeonBLandgrebeDAFast Parzen density estimation using clustering-based branch andboundIEEE Trans Pattern Anal Mach Intell199416995095410.1109/34.310693 Xie J, Wang Z (2009) Probability density function estimation based on windowed fourier transform of characteristic function. In: International congress on image and signal processing EngelJDensity estimation with Haar seriesStat Probab Lett19909211111710.1016/0167-7152(92)90003-N BabichGACampsOIWeighted Parzen windows for pattern classificationIEEE Trans Pattern Anal Mach Intell199618556757010.1109/34.494647 Kitahara D, Yamada I (2015) Probability density function estimation by positive quartic C 2 -spline functions. In: IEEE international conference on acoustics, speech and signal processing AlexandreLAA solve-the-equation approach for unidimensional data kernel bandwidth selection2008CovilhãUniversity of Beira Interior MansourAMeslehRAggouneEHMBlind estimation of statistical properties of non-stationary random variablesJ Adv Signal Process2015511309314 ZongZLamKYEstimation of complicated distributions using B-spline functionsStruct Saf199820434135510.1016/S0167-4730(98)00019-8 TerrellGRThe maximal smoothing principle in density estimationJ Am Stat Assoc19908541047047710.1080/01621459.1990.10476223 MitchellTMCarbonellJGMichalskiRSMachine learning: a guide to current research1986NorwellKluwer Academic Publishers10.1007/978-1-4613-2279-5 Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, Pittsburgh, PA, USA WoldSSpline functions in data analysisTechnometrics197416111110.1080/00401706.1974.10489142 ReinschCHSmoothing by spline functionsNumer Math196710317718310.1007/BF02162161 Zhang H (2005) The optimality of Naive Bayes. In: Seventeenth international florida artificial intelligence research society conference, Miami Beach, Florida, USA 343_CR18 TM Mitchell (343_CR3) 1986 343_CR19 AM Mood (343_CR4) 1974 LA Alexandre (343_CR9) 2008 E Parzen (343_CR6) 1962; 33 JV Candy (343_CR1) 2009 Z Zong (343_CR23) 1998; 20 A Mansour (343_CR24) 2015; 51 H Van Khuong (343_CR14) 2006; 10 BW Silverman (343_CR7) 1986 CH Reinsch (343_CR21) 1967; 10 B Jeon (343_CR10) 1994; 16 J Engel (343_CR16) 1990; 9 343_CR25 NL Bowers (343_CR13) 1966; 18 PT.1 SC Schwartz (343_CR15) 1967; 38 343_CR27 343_CR29 343_CR28 GA Babich (343_CR11) 1996; 18 M Vannucci (343_CR17) 1998 C De Boor (343_CR26) 1978 J Pfanzagl (343_CR30) 1996; 91 M Rosenblatt (343_CR5) 1956; 27 M Girolami (343_CR12) 2003; 25 L Marsh (343_CR22) 2002; 52 S Wold (343_CR20) 1974; 16 GR Terrell (343_CR8) 1990; 85 CM Bishop (343_CR2) 1996 |
| References_xml | – reference: ParzenEOn estimation of probability density function and modeAnn Math Stat19623331065107610.1214/aoms/1177704472 – reference: MarshLCormierDRSpline regression modelsJ R Stat Soc20025234958 – reference: Van KhuongHKongHYGeneral expression for pdf of a sum of independent exponential random variablesIEEE Commun Lett200610315916110.1109/LCOMM.2006.1603370 – reference: AlexandreLAA solve-the-equation approach for unidimensional data kernel bandwidth selection2008CovilhãUniversity of Beira Interior – reference: SchwartzSCEstimation of probability density by an orthogonal seriesAnn Math Stat19673841261126510.1214/aoms/1177698795 – reference: Zhang H (2005) The optimality of Naive Bayes. In: Seventeenth international florida artificial intelligence research society conference, Miami Beach, Florida, USA – reference: BowersNLExpansion of probability density functions as a sum of gamma densities with applications in risk theoryTrans Soc Actuar196618 PT.152125147 – reference: TerrellGRThe maximal smoothing principle in density estimationJ Am Stat Assoc19908541047047710.1080/01621459.1990.10476223 – reference: Xie J, Wang Z (2009) Probability density function estimation based on windowed fourier transform of characteristic function. In: International congress on image and signal processing – reference: Howard RM (2010) PDF estimation via characteristic function and an orthonormal basis set. In: Wseas international conference on systems – reference: SilvermanBWDensity estimation for statistics and data analysis1986LondonChapman & Hall10.1007/978-1-4899-3324-9 – reference: De BoorCA practical guide to splines1978New YorkSpringer10.1007/978-1-4612-6333-3 – reference: MansourAMeslehRAggouneEHMBlind estimation of statistical properties of non-stationary random variablesJ Adv Signal Process2015511309314 – reference: JeonBLandgrebeDAFast Parzen density estimation using clustering-based branch andboundIEEE Trans Pattern Anal Mach Intell199416995095410.1109/34.310693 – reference: BabichGACampsOIWeighted Parzen windows for pattern classificationIEEE Trans Pattern Anal Mach Intell199618556757010.1109/34.494647 – reference: Rennie JDM, Shih L, Teevan J, Karger D (2003) Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the twentieth international conference on machine learning, Washington, DC, USA – reference: BishopCMNeural networks for pattern recognition1996New YorkOxford University Press – reference: ReinschCHSmoothing by spline functionsNumer Math196710317718310.1007/BF02162161 – reference: VannucciMNonparametric density estimation using wavelets; Discussion Paper 95–26, ISDS1998DurhamDuke University – reference: ZongZLamKYEstimation of complicated distributions using B-spline functionsStruct Saf199820434135510.1016/S0167-4730(98)00019-8 – reference: WoldSSpline functions in data analysisTechnometrics197416111110.1080/00401706.1974.10489142 – reference: MoodAMGraybillFABoesDCIntroduction to the theory of statistics19743New YorkMcGraw-Hill Education – reference: PfanzaglJHambökerRParametric statistical theoryJ Am Stat Assoc199691433269287 – reference: EngelJDensity estimation with Haar seriesStat Probab Lett19909211111710.1016/0167-7152(92)90003-N – reference: MitchellTMCarbonellJGMichalskiRSMachine learning: a guide to current research1986NorwellKluwer Academic Publishers10.1007/978-1-4613-2279-5 – reference: RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat195627383283710.1214/aoms/1177728190 – reference: Kitahara D, Yamada I (2015) Probability density function estimation by positive quartic C 2 -spline functions. In: IEEE international conference on acoustics, speech and signal processing – reference: CandyJVBayesian signal processing: classical, modern and particle filtering methods2009New YorkWiley-Interscience10.1002/9780470430583 – reference: GirolamiMHeCProbability density estimation from optimally condensed data samplesIEEE Trans Pattern Anal Mach Intell200325101253126410.1109/TPAMI.2003.1233899 – reference: Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, Pittsburgh, PA, USA – volume-title: Nonparametric density estimation using wavelets; Discussion Paper 95–26, ISDS year: 1998 ident: 343_CR17 – volume-title: Bayesian signal processing: classical, modern and particle filtering methods year: 2009 ident: 343_CR1 doi: 10.1002/9780470430583 – volume: 27 start-page: 832 issue: 3 year: 1956 ident: 343_CR5 publication-title: Ann Math Stat doi: 10.1214/aoms/1177728190 – volume: 52 start-page: 49 issue: 3 year: 2002 ident: 343_CR22 publication-title: J R Stat Soc – volume: 9 start-page: 111 issue: 2 year: 1990 ident: 343_CR16 publication-title: Stat Probab Lett doi: 10.1016/0167-7152(92)90003-N – volume-title: A practical guide to splines year: 1978 ident: 343_CR26 doi: 10.1007/978-1-4612-6333-3 – volume: 10 start-page: 177 issue: 3 year: 1967 ident: 343_CR21 publication-title: Numer Math doi: 10.1007/BF02162161 – ident: 343_CR28 – volume-title: Machine learning: a guide to current research year: 1986 ident: 343_CR3 doi: 10.1007/978-1-4613-2279-5 – ident: 343_CR27 – ident: 343_CR29 doi: 10.1145/1143844.1143865 – volume-title: Introduction to the theory of statistics year: 1974 ident: 343_CR4 – volume: 85 start-page: 470 issue: 410 year: 1990 ident: 343_CR8 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1990.10476223 – volume: 18 start-page: 567 issue: 5 year: 1996 ident: 343_CR11 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.494647 – volume: 10 start-page: 159 issue: 3 year: 2006 ident: 343_CR14 publication-title: IEEE Commun Lett doi: 10.1109/LCOMM.2006.1603370 – ident: 343_CR25 doi: 10.1109/ICASSP.2015.7178633 – volume: 91 start-page: 269 issue: 433 year: 1996 ident: 343_CR30 publication-title: J Am Stat Assoc – ident: 343_CR19 doi: 10.1109/CISP.2009.5300813 – volume: 38 start-page: 1261 issue: 4 year: 1967 ident: 343_CR15 publication-title: Ann Math Stat doi: 10.1214/aoms/1177698795 – volume: 25 start-page: 1253 issue: 10 year: 2003 ident: 343_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2003.1233899 – volume: 51 start-page: 309 issue: 1 year: 2015 ident: 343_CR24 publication-title: J Adv Signal Process – volume: 18 PT.1 start-page: 125 issue: 52 year: 1966 ident: 343_CR13 publication-title: Trans Soc Actuar – volume: 16 start-page: 1 issue: 1 year: 1974 ident: 343_CR20 publication-title: Technometrics doi: 10.1080/00401706.1974.10489142 – volume: 20 start-page: 341 issue: 4 year: 1998 ident: 343_CR23 publication-title: Struct Saf doi: 10.1016/S0167-4730(98)00019-8 – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 343_CR6 publication-title: Ann Math Stat doi: 10.1214/aoms/1177704472 – volume-title: Neural networks for pattern recognition year: 1996 ident: 343_CR2 – ident: 343_CR18 – volume: 16 start-page: 950 issue: 9 year: 1994 ident: 343_CR10 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.310693 – volume-title: A solve-the-equation approach for unidimensional data kernel bandwidth selection year: 2008 ident: 343_CR9 – volume-title: Density estimation for statistics and data analysis year: 1986 ident: 343_CR7 doi: 10.1007/978-1-4899-3324-9 |
| SSID | ssj0064830 |
| Score | 2.1518142 |
| Snippet | Nonparametric estimation of cumulative distribution function and probability density function of continuous random variables is a basic and central problem in... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 559 |
| SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Biomedical and Life Sciences Classification Computational Biology - methods Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Computer simulation Continuity (mathematics) Distribution functions Economic models Health Sciences Life Sciences Likelihood Functions Mathematical and Computational Physics Mathematical models Maximum likelihood estimation Medicine Models, Statistical Monte Carlo simulation Numerical methods Original Research Article Probability Probability density functions Probability distribution Probability theory Random variables Regression Analysis Regression models Research Design Spline functions Statistical analysis Statistical methods Statistics for Life Sciences Statistics, Nonparametric Theoretical Theoretical and Computational Chemistry |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL5U1oQUbiBhZZ24mTE2pLK5BKtUIg9Rb5WUW02bIPlv33jB1nV6hqLxxyiR3L0czYY8_M9wG8ZdYZL0xJC68EFaUvqULPl2oV4K50zZSKhcLH8uSkOj2tx-nCbZbSKoc1MS7UdmLCHfkH1Ls6wJfJ4uPlLxpYo0J0NVFo3IY7ASWBxdS98bASl6KKXCN4JOGUyWKUimb60jlW8JAphE_OBafLfzemK97mlUhp3ICOtv936g_hQXI9yV6vK4_glusew72ejHL1BJaHaO19ISOZeDKeoqXHzNkV-RTQdRMxFlGdJV_mM7K3CX2TtiP7auVCQSaJNJshAUmtu39Vf9qLxQU5bn-68zYAKZNv7qzPwO2ewo-jw-8Hn2miZaBG5HxOrcZfMeh4FMpUhc6VxC2_0tLakVQ110Kj3LXTxnDrauawO9OqzPGdFx79v2ew1U069wKIkkbiEc6LuqqEESgoJ3Obc8c8OobeZjAaZNKYhFkeqDPOmw3acpBjg3JsohybZQbv1t9c9ogdN_beHWTWJOudNRuBXdNcipJJWeYZvFk3o1mGWIvq3GTRD1EHcP46g-e9Bq1nw0fotAnBM3g_qNRm8Oun-vLmqe7AfRbVOWj1LmzNpwv3Cu6a3_N2Nn0dDeMvORoU1Q priority: 102 providerName: ProQuest |
| Title | Estimation of Probability Distribution and Its Application in Bayesian Classification and Maximum Likelihood Regression |
| URI | https://link.springer.com/article/10.1007/s12539-019-00343-w https://www.ncbi.nlm.nih.gov/pubmed/31317443 https://www.proquest.com/docview/2259117975 https://www.proquest.com/docview/2264627760 https://www.proquest.com/docview/2259923649 |
| Volume | 11 |
| WOSCitedRecordID | wos000477629000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1867-1462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064830 issn: 1913-2751 databaseCode: RSV dateStart: 20090301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8MQ2QHvhYwwWGJWReANLaezE8eMGnUBbq6h8qOIlsh0HRWwp6gel_56zk7RCY0jwkJMSXyzLd-c7674AXkaFNSU3CY1LxSlPyoQqtHypVq7clZaRUj5R-EKMRulkIrM2KWzeRbt3Lkl_Um-T3aKYudgefELGGV3twB6qu9Q1bBh_-NydvwlPfYcRvIgwGom436bK_HmO39XRNRvzmn_Uq52z-_-34AdwrzUzyUnDFw_hlq0P4E7TeHJ9AHeHrUv9EawGKORN_iKZliSboYD7gNk1eeuK6rb9sIiqC_J-MScnW483qWpyqtbW5WES313TxR2pDfpQ_ayullfkovpmLytXP5mM7dcm8LY-hE9ng49v3tG2GwM1PGQLWmghhUF7I1YmjXWoBGr6VIui6AslmeYaya2tNoYVVkYW0SOtkhC_lbxEs-8x7NbT2h4BUcIIvLmVXKYpNxwpZUVYhMxGJdqDZRFAvyNKbtpS5a5jxmW-LbLs9jbHvc393uarAF5t_vneFOr4K_ZxR-u8Fdp5jkebdBXyRHzDcMKTSIgkDODFZhil0blYVG2ny2YK6WryywCeNCy0WQ3ro63GOQvgdccv28lvXurTf0N_BvuRZznHecewu5gt7XO4bX4sqvmsBztiIjxMe7B3OhhlY3w7FxThMDx3UGQIs_hLz0vVL949Fdc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAiqX8oZAASPBCSyythMnhwoV2qqr3a4qVKTeUttxqog2W_bBsn-qv7HjONkVqtpbDxxySRxrknzzcDwzH8AHlltTCBPTqFCCiriIqcLIl2rl2l3plClVFwr35WCQHB2lBytw0dbCuLTK1ibWhjofGveP_AviLnXty2T09fw3daxRbne1pdDwsOjZ-QyXbOPN7jZ-34-M7e4cft-jDasANSLkE5prnMSg34yUSSIdKokeK9EyzztSpVwLjWJrq43huU2ZxeFMqzjEc4UoMHzBee_AXcET6fSqJ2lr-WOR1NwmuATilMmo0xTp-FI9FnGXmYRHyAWns38d4ZXo9srObO3wdh_-b6_qEaw3oTXZ8rrwGFZs9QTue7LN-VOY7aA184WaZFiQgxFasjozeE62XffghviLqCon3cmYbC239klZkW9qbl3BKalpRF2ClVoM31d_y7PpGemXv-xp6RpFkx_2xGcYV8_g56089XNYrYaVfQlESSNxiVqINEmEEQgMK8M85JYVGPgWeQCdFgOZaXqyO2qQ02zZTdrhJkPcZDVuslkAnxb3nPuOJDeO3mgxkjXWaZwtAXLN5VjETMo4DOD94jKaHbeXpCo7nPopUkc-kAbwwiN2IQ3vYFAqBA_gcwvh5eTXi_rqZlHfwdre4X4_63cHvdfwgNWq5DRqA1Yno6l9A_fMn0k5Hr2tlZLA8W1D-xKH3XUH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BgYoLj_IKFDASN7CatZ04PhbaFRXb1YqXeov8RBFtttrNsuy_x3aSXVApEuKQSzy2LHvG_qyZ-QbgJTFWO6ZznDnJMMtdjqVHvljJQHelBJEyJgqP-HhcnJyIyS9Z_DHavXdJtjkNgaWpbvbOjdvbJL6RjIY4H_-llFG8vArXWAikD-_1j1_6szhnRaw24h8lFBOeDbq0mT-P8fvVdAFvXvCVxitoePv_J38HbnXwE-23-nIXrth6B260BSlXO7B93Lna78Hy0Bt_m9eIpg5NZt7wYyDtCh0Est2uThaStUFHzRztbzzhqKrRG7myIT8TxaqbIR5JrsWP5Y_qbHGGRtU3e1oFXmX0wX5tA3Lr-_B5ePjp7TvcVWnAmqW0wUZxwbXHIZnURaZSyT0CKBQ3ZsCloIoprwbKKq2psYJYL06UzFP_zzHn4eAD2KqntX0ESHLN_YvOMVEUTDO_a5anJqWWOI8TnUlg0G9QqTsK81BJ47TckC-HtS392pZxbctlAq_Wfc5bAo-_Su_2-152xjwv_ZEnAnMezy5pzllOOM_TBF6sm72VBteLrO100Q4hAle_SOBhq07r2dCBx3CM0QRe97qzGfzyqT7-N_HnsD05GJajo_H7J3CTRO0LSrgLW81sYZ_Cdf29qeazZ9GAfgLlAhqI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Probability+Distribution+and+Its+Application+in+Bayesian+Classification+and+Maximum+Likelihood+Regression&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Dai%2C+Hao&rft.au=Wang%2C+Wei&rft.au=Xu%2C+Qin&rft.au=Xiong%2C+Yi&rft.date=2019-09-01&rft.eissn=1867-1462&rft.volume=11&rft.issue=3&rft.spage=559&rft_id=info:doi/10.1007%2Fs12539-019-00343-w&rft_id=info%3Apmid%2F31317443&rft.externalDocID=31317443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |