Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions

The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging Jg. 100; S. 64 - 72
Hauptverfasser: Nai, Ying-Hwey, Cheong, Dennis Lai Hong, Roy, Sharmili, Kok, Trina, Stephenson, Mary C., Schaefferkoetter, Josh, Totman, John J., Conti, Maurizio, Eriksson, Lars, Robins, Edward G., Wang, Ziting, Chua, Wynne Yuru, Ang, Bertrand Wei Leng, Singha, Arvind Kumar, Thamboo, Thomas Paulraj, Chiong, Edmund, Reilhac, Anthonin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Inc 01.07.2023
Schlagworte:
ISSN:0730-725X, 1873-5894, 1873-5894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!