Loewner chains and parametric representation in several complex variables

Let B be the unit ball of C n with respect to an arbitrary norm. We study certain properties of Loewner chains and their transition mappings on the unit ball  B. We show that any Loewner chain f( z, t) and the transition mapping v( z, s, t) associated to f( z, t) satisfy locally Lipschitz conditions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 281; H. 2; S. 425 - 438
Hauptverfasser: Graham, Ian, Kohr, Gabriela, Kohr, Mirela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Diego, CA Elsevier Inc 15.05.2003
Elsevier
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let B be the unit ball of C n with respect to an arbitrary norm. We study certain properties of Loewner chains and their transition mappings on the unit ball  B. We show that any Loewner chain f( z, t) and the transition mapping v( z, s, t) associated to f( z, t) satisfy locally Lipschitz conditions in t locally uniformly with respect to z∈ B. Moreover, we prove that a mapping f∈ H( B) has parametric representation if and only if there exists a Loewner chain f( z, t) such that the family { e − t f( z, t)} t⩾0 is a normal family on B and f( z)= f( z,0) for z∈ B. Also we show that univalent solutions f( z, t) of the generalized Loewner differential equation in higher dimensions are unique when { e − t f( z, t)} t⩾0 is a normal family on  B. Finally we show that the set S 0( B) of mappings which have parametric representation on B is compact.
ISSN:0022-247X
1096-0813
DOI:10.1016/S0022-247X(03)00127-6