A Study of the Stability of an Industrial Robot Servo System: PID Control Based on a Hybrid Sparrow Optimization Algorithm

Industrial robots can cause servo system instability during operation due to friction between joints and changes in end loads, which results in jittering of the robotic arm. Therefore, this paper proposes a hybrid sparrow search algorithm (HSSA) method for PID parameter optimization. By studying the...

Full description

Saved in:
Bibliographic Details
Published in:Actuators Vol. 14; no. 2; p. 49
Main Authors: Wang, Pengxiang, Feng, Tingping, Song, Changlin, Li, Junmin, Yang, Simon X.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2025
Subjects:
ISSN:2076-0825, 2076-0825
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial robots can cause servo system instability during operation due to friction between joints and changes in end loads, which results in jittering of the robotic arm. Therefore, this paper proposes a hybrid sparrow search algorithm (HSSA) method for PID parameter optimization. By studying the optimization characteristics of the genetic algorithm (GA) and sparrow search algorithm (SSA), the method combines the global optimization ability of GA and the local optimization ability of SSA, thus effectively reducing the risk of SSA falling into local optimum and improving the ability of SSA to find global optimization solutions. On the basis of the traditional PID control algorithm, HSSA is used to intelligently optimize the PID parameters so that it can better meet the nonlinear motion of the industrial robot servo system. It is proven through experiments that the HSSA in this paper, compared with GA, SSA, and traditional PID, has a maximum improvement of 73% in the step response time and a maximum improvement of more than 95% in the iterative optimization search speed. The experimental results show that the method has a good suppression effect on the jitter generated by industrial robots in motion, effectively improving the stability of the servo system, so this work greatly improves the stability and safety of industrial robots in operation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-0825
2076-0825
DOI:10.3390/act14020049