An iterative algorithm for simulation error based identification of polynomial input-output models using multi-step prediction

Effective identification of polynomial input-output models for applications requiring long-range prediction or simulation performance relies on both careful model selection and accurate parameter estimation. The simulation error minimisation (SEM) approach has been shown to provide significant advan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of control Ročník 83; číslo 7; s. 1442 - 1456
Hlavní autoři: Farina, Marcello, Piroddi, Luigi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis Group 01.07.2010
Taylor & Francis
Taylor & Francis Ltd
Témata:
ISSN:0020-7179, 1366-5820
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Effective identification of polynomial input-output models for applications requiring long-range prediction or simulation performance relies on both careful model selection and accurate parameter estimation. The simulation error minimisation (SEM) approach has been shown to provide significant advantages in the model selection phase by ruling out candidate models with good short-term prediction capabilities but unsuitable long-term dynamics. However, SEM-based parameter estimation has been generally avoided due to excessive computational effort. This article extends to the nonlinear case a computationally efficient approach for this task, that was previously developed for linear models, based on the iterative estimation of predictors with increasing prediction horizon. Conditions for the applicability of the approach to various model classes are also discussed. Finally, some examples are provided to show the effectiveness and computational convenience of the proposed algorithm for polynomial input-output identification, as well as the improvements achievable by enforcing SEM parameter estimation. A benchmark for nonlinear identification is also analysed, with encouraging results.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-7179
1366-5820
DOI:10.1080/00207171003793262