Optimal Planning for the Development of Power System in Respect to Distributed Generations Based on the Binary Dragonfly Algorithm

With the increasing number of population and the rising demand for electricity, providing safe and secure energy to consumers is getting more and more important. Adding dispersed products to the distribution network is one of the key factors in achieving this goal. However, factors such as the amoun...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 10; číslo 14; s. 4795
Hlavní autoři: Kakueinejad, Mohammad Hossein, Heydari, Azim, Askari, Mostafa, Keynia, Farshid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2020
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the increasing number of population and the rising demand for electricity, providing safe and secure energy to consumers is getting more and more important. Adding dispersed products to the distribution network is one of the key factors in achieving this goal. However, factors such as the amount of investment and the return on the investment on one side, and the power grid conditions, such as loss rates, voltage profiles, reliability, and maintenance costs, on the other hand, make it more vital to provide optimal annual planning methods concerning network development. Accordingly, in this paper, a multilevel method is presented for optimal network power expansion planning based on the binary dragonfly optimization algorithm, taking into account the distributed generation. The proposed objective function involves the minimization of the cost of investment, operation, repair, and the cost of reliability for the development of the network. The effectiveness of the proposed model to solve the multiyear network expansion planning problem is illustrated by applying them on the 33-bus distribution network and comparing the acquired results with the results of other solution methods such as GA, PSO, and TS.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app10144795