A Linear Kernel for Planar Total Dominating Set

A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Mathematics and Theoretical Computer Science Ročník 20 no. 1; číslo Discrete Algorithms; s. 1
Hlavní autoři: Garnero, Valentin, Sau, Ignasi
Médium: Journal Article
Jazyk:angličtina
Vydáno: DMTCS 01.05.2018
Discrete Mathematics & Theoretical Computer Science
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most $410k$ vertices, where $k$ is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set. Comment: 33 pages, 13 figures
AbstractList A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most $410k$ vertices, where $k$ is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set. Comment: 33 pages, 13 figures
A total dominating set of a graph G = (V, E) is a subset D [??] V such that every vertex in V is adjacent to some vertex in D. Finding a total dominating set of minimum size is NP-hard on planar graphs and W [2] -complete on general graphs when parameterized by the solution size. [B.sub.y] the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for TOTAL DOMINATING SET on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for TOTAL DOMINATING SET on planar graphs with at most 410k vertices, where k is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as DOMINATING SET, EDGE DOMINATING SET, EFFICIENT DOMINATING SET, CONNECTED DOMINATING SET, or RED-BLUE DOMINATING SET. Key words: parameterized complexity, planar graphs, linear kernels, total domination
A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most $410k$ vertices, where $k$ is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set.
A total dominating set of a graph G = (V, E) is a subset D [??] V such that every vertex in V is adjacent to some vertex in D. Finding a total dominating set of minimum size is NP-hard on planar graphs and W [2] -complete on general graphs when parameterized by the solution size. [B.sub.y] the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for TOTAL DOMINATING SET on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for TOTAL DOMINATING SET on planar graphs with at most 410k vertices, where k is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as DOMINATING SET, EDGE DOMINATING SET, EFFICIENT DOMINATING SET, CONNECTED DOMINATING SET, or RED-BLUE DOMINATING SET.
Audience Academic
Author Garnero, Valentin
Sau, Ignasi
Author_xml – sequence: 1
  givenname: Valentin
  surname: Garnero
  fullname: Garnero, Valentin
– sequence: 2
  givenname: Ignasi
  orcidid: 0000-0002-8981-9287
  surname: Sau
  fullname: Sau, Ignasi
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-03124041$$DView record in HAL
BookMark eNptkc1LxDAQxYMoqKtXzwWP0jWTpGlyXNavxRWF3XuYpskaaRtJi-B_b90VUVjmMMPjzW8G3ik57GLnCLkAOmVccnV987Ser3JGc8hBHJAT4LLIFS3o4Z_5mJz2_RulwLQoT8j1LFuGzmHKHl3qXJP5mLKXBrtRWccBm-wmtqHDIXSbbOWGM3Lksend-U-fkPXd7Xr-kC-f7xfz2TK3gvIhB2W1FTUD9OOZkqMsFKWoCwVoi1o6xnhtVclQ28pDhd5LVxUSwXFhNZ-QxQ5bR3wz7ym0mD5NxGC2Qkwbg2kItnFGA1O2pM4KLETlUakSGANbOae10H5kXe1Yr9j8Qz3MlqYJqW0N5cAEFfABo_ty597gCA-dj0NC24bemplkUpaS8W_XdI9rrNq1wY65-DDq-xZsin2fnP_9BKjZxme28RlGDRgQ_AuCRosw
ContentType Journal Article
Copyright COPYRIGHT 2018 DMTCS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2018 DMTCS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOA
DOI 10.23638/DMTCS-20-1-14
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_9128c70ec4a54bfa8871221cbee9949f
oai:HAL:lirmm-03124041v1
A626676231
10_23638_DMTCS_20_1_14
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
M~E
1XC
ID FETCH-LOGICAL-c403t-18c9c4d21af94773a65800a9581ac5d6e223dc872a9cbf1baff6eb56a1e34c93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489685900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:52:06 EDT 2025
Sat Nov 29 15:07:36 EST 2025
Wed Mar 19 00:35:24 EDT 2025
Sat Mar 08 18:48:55 EST 2025
Sat Nov 29 08:06:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Discrete Algorithms
Keywords Data Structures and Algorithms
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-18c9c4d21af94773a65800a9581ac5d6e223dc872a9cbf1baff6eb56a1e34c93
ORCID 0000-0002-8981-9287
OpenAccessLink https://doaj.org/article/9128c70ec4a54bfa8871221cbee9949f
ParticipantIDs doaj_primary_oai_doaj_org_article_9128c70ec4a54bfa8871221cbee9949f
hal_primary_oai_HAL_lirmm_03124041v1
gale_infotracmisc_A626676231
gale_infotracacademiconefile_A626676231
crossref_primary_10_23638_DMTCS_20_1_14
PublicationCentury 2000
PublicationDate 20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 20180501
  day: 01
PublicationDecade 2010
PublicationTitle Discrete Mathematics and Theoretical Computer Science
PublicationYear 2018
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.068593
Snippet A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total...
A total dominating set of a graph G = (V, E) is a subset D [??] V such that every vertex in V is adjacent to some vertex in D. Finding a total dominating set...
SourceID doaj
hal
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms 05c85, 05c10
computer science - data structures and algorithms
Fuzzy sets
g.2.2
Graph theory
Kernel functions
Mathematical research
Mathematics
Set theory
Title A Linear Kernel for Planar Total Dominating Set
URI https://hal-lirmm.ccsd.cnrs.fr/lirmm-03124041
https://doaj.org/article/9128c70ec4a54bfa8871221cbee9949f
Volume 20 no. 1
WOSCitedRecordID wos000489685900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECbatEM7JGnaoE7SgEOAToJFkaLE0XkhRerAQDykE3E8kmiAxC4UNWN_e4-SbNRTlywaKAI63fM78XTH2Al4WToUIQMddaa8LzKnlc8I2deikrXPNXbDJqqbm_ruzsz-GfWVasL69sA948aGHChWeUAFpXIRyChEUQh0IRijTEzeN6_MKpkazg8Ko6q-RWMhScPG59P52S1pBCVMQm2EoK5T_9ofv_65-p7axZfLXbY9AEM-6Qn6wF6FxR7bWQ1d4IMN7rH303Wj1aePbDzhlE2StvLr0CzCAycMytMgIlqZLwlY8_NlKnZJxc38NrSf2PzyYn52lQ0zEDJUuWwzUaNB5QsBkV6pkkCIIc_BlLUALL0OFN491lUBBl0UDmLUwZUaRJAKjdxnW4vlInxmXGtjUJc-Ql6rkDtIB5oBgCwcZUQ3Yl9XXLG_-k4XljKEjn-2458tKGGgXGHEThPT1rtSh-pugeRmB7nZ_8mNHpdYbpMdtQ0gDL8DELGpI5WdUKalyVNLMWJHGztJ_3Hj9gkJbYOYq8l3-3DfPD5aclkEWZR4FgcvQfQhe0eAqe4LHo_YVtv8Dl_YW3xu75-a404F6Tr9c3HM3sy-TWc__gJv9OCl
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Linear+Kernel+for+Planar+Total+Dominating+Set&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Valentin+Garnero&rft.au=Ignasi+Sau&rft.date=2018-05-01&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=20+no.+1&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.23638%2FDMTCS-20-1-14&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9128c70ec4a54bfa8871221cbee9949f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon