A Linear Kernel for Planar Total Dominating Set

A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Mathematics and Theoretical Computer Science Vol. 20 no. 1; no. Discrete Algorithms; p. 1
Main Authors: Garnero, Valentin, Sau, Ignasi
Format: Journal Article
Language:English
Published: DMTCS 01.05.2018
Discrete Mathematics & Theoretical Computer Science
Subjects:
ISSN:1365-8050, 1462-7264, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A total dominating set of a graph $G=(V,E)$ is a subset $D \subseteq V$ such that every vertex in $V$ is adjacent to some vertex in $D$. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most $410k$ vertices, where $k$ is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set. Comment: 33 pages, 13 figures
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.23638/DMTCS-20-1-14