Deep Learning Techniques for Radar-Based Continuous Human Activity Recognition

Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning and knowledge extraction Vol. 5; no. 4; pp. 1493 - 1518
Main Authors: Mehta, Ruchita, Sharifzadeh, Sara, Palade, Vasile, Tan, Bo, Daneshkhah, Alireza, Karayaneva, Yordanka
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2023
Subjects:
ISSN:2504-4990, 2504-4990
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler radar. In this study, two strategies have been employed: the first method uses un-equalized series of activities, whereas the second method utilizes a gradient-based strategy for equalization of the series of activities. The dynamic time warping (DTW) algorithm and Long Short-term Memory (LSTM) techniques have been implemented for the classification of un-equalized and equalized series of activities, respectively. The input for DTW was provided using three strategies. The first approach uses the pixel-level data of frames (UnSup-PLevel). In the other two strategies, a convolutional variational autoencoder (CVAE) is used to extract Un-Supervised Encoded features (UnSup-EnLevel) and Supervised Encoded features (Sup-EnLevel) from the series of Doppler frames. The second approach for equalized data series involves the application of four distinct feature extraction methods: i.e., convolutional neural networks (CNN), supervised and unsupervised CVAE, and principal component Analysis (PCA). The extracted features were considered as an input to the LSTM. This paper presents a comparative analysis of a novel supervised feature extraction pipeline, employing Sup-ENLevel-DTW and Sup-EnLevel-LSTM, against several state-of-the-art unsupervised methods, including UnSUp-EnLevel-DTW, UnSup-EnLevel-LSTM, CNN-LSTM, and PCA-LSTM. The results demonstrate the superiority of the Sup-EnLevel-LSTM strategy. However, the UnSup-PLevel strategy worked surprisingly well without using annotations and frame equalization.
AbstractList Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler radar. In this study, two strategies have been employed: the first method uses un-equalized series of activities, whereas the second method utilizes a gradient-based strategy for equalization of the series of activities. The dynamic time warping (DTW) algorithm and Long Short-term Memory (LSTM) techniques have been implemented for the classification of un-equalized and equalized series of activities, respectively. The input for DTW was provided using three strategies. The first approach uses the pixel-level data of frames (UnSup-PLevel). In the other two strategies, a convolutional variational autoencoder (CVAE) is used to extract Un-Supervised Encoded features (UnSup-EnLevel) and Supervised Encoded features (Sup-EnLevel) from the series of Doppler frames. The second approach for equalized data series involves the application of four distinct feature extraction methods: i.e., convolutional neural networks (CNN), supervised and unsupervised CVAE, and principal component Analysis (PCA). The extracted features were considered as an input to the LSTM. This paper presents a comparative analysis of a novel supervised feature extraction pipeline, employing Sup-ENLevel-DTW and Sup-EnLevel-LSTM, against several state-of-the-art unsupervised methods, including UnSUp-EnLevel-DTW, UnSup-EnLevel-LSTM, CNN-LSTM, and PCA-LSTM. The results demonstrate the superiority of the Sup-EnLevel-LSTM strategy. However, the UnSup-PLevel strategy worked surprisingly well without using annotations and frame equalization.
Audience Academic
Author Daneshkhah, Alireza
Sharifzadeh, Sara
Palade, Vasile
Mehta, Ruchita
Karayaneva, Yordanka
Tan, Bo
Author_xml – sequence: 1
  givenname: Ruchita
  orcidid: 0009-0008-8164-8250
  surname: Mehta
  fullname: Mehta, Ruchita
– sequence: 2
  givenname: Sara
  orcidid: 0000-0003-4621-2917
  surname: Sharifzadeh
  fullname: Sharifzadeh, Sara
– sequence: 3
  givenname: Vasile
  orcidid: 0000-0002-6768-8394
  surname: Palade
  fullname: Palade, Vasile
– sequence: 4
  givenname: Bo
  orcidid: 0000-0002-6855-6270
  surname: Tan
  fullname: Tan, Bo
– sequence: 5
  givenname: Alireza
  orcidid: 0000-0001-7751-4307
  surname: Daneshkhah
  fullname: Daneshkhah, Alireza
– sequence: 6
  givenname: Yordanka
  surname: Karayaneva
  fullname: Karayaneva, Yordanka
BookMark eNptkUtrWzEQhUVJoWmaVf_AhS7LTUYvX2vpuo8ETAshXYuxNHLl2pKrqxvIv68ctxBK0ULDcM43Gp3X7CzlRIy95XAlpYHrPf4kDQpg0C_YuWhlr4yBs2f1K3Y5jlsAEINRHNQ5-_qR6NCtCEuKadPdk_uR4q-Jxi7k0t2hx9J_wJF8t8ypxjTlaexupj2mbuFqfIj1sbsjlzcp1pjTG_Yy4G6kyz_3Bfv--dP98qZffftyu1yseqdA1p7PuTcqzHzwFEB5WDslxNp7zpFISE3GDXOtFUcdjJ85SQpQoSAcXBCDvGC3J67PuLWHEvdYHm3GaJ8auWwslhrdjqxBQHIzPDKUa0S5dq4N0SjJk5aN9e7EOpR83LzabZ5Kas-3woAatNTAm-rqpNpgg8YUci3o2vG0j64lEWLrL4a5UBrmWjQDPxlcyeNYKFgXKx4_qRnjznKwx9jss9ia5_0_nr-r_U_9G1Vzm1M
CitedBy_id crossref_primary_10_3390_s24165450
crossref_primary_10_1016_j_compbiomed_2024_108382
crossref_primary_10_3390_s24072199
crossref_primary_10_3390_computation12020019
crossref_primary_10_1049_cvi2_70014
crossref_primary_10_3390_s25072268
crossref_primary_10_3390_eng6030044
Cites_doi 10.1109/ICCS45141.2019.9065460
10.1109/CHASE.2017.87
10.1109/JSEN.2021.3068388
10.3390/rs11091068
10.1109/ECTI-CON49241.2020.9158273
10.1109/ACCESS.2020.2991891
10.1007/978-3-642-24797-2
10.1109/ICEIC54506.2022.9748776
10.1109/ICSIP49896.2020.9339335
10.1109/ICMLA55696.2022.00076
10.3390/s21051636
10.1109/ACCESS.2019.2916828
10.1109/TGRS.2022.3230829
10.1109/ACCESS.2020.2977892
10.1109/ICAIIC48513.2020.9065078
10.1109/IMBIOC.2019.8777855
10.1109/ICCE48956.2021.9352085
10.1145/3349624.3356768
10.1051/matecconf/201823203042
10.1007/1-4020-4295-7
10.1007/978-3-540-74048-3
10.3390/aerospace7080115
10.3390/s19071716
10.1109/ACCESS.2021.3074088
10.1109/SNAMS.2019.8931857
10.1109/ACCESS.2019.2921096
10.1186/s12889-021-10427-2
10.3390/s23115100
10.1109/JSEN.2017.2722105
10.1155/2015/679123
10.1109/ICASSP39728.2021.9414686
10.1016/j.cogsys.2018.04.002
10.1109/JSEN.2018.2834739
10.1016/j.neunet.2019.04.014
10.1109/ICSP.2016.7877996
10.1109/TNNLS.2021.3084827
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/make5040075
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 1518
ExternalDocumentID oai_doaj_org_article_9a0aec6ac3e44c41a3bccee25a3ede53
A782450852
10_3390_make5040075
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID AADQD
AAFWJ
AAYXX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-181d94f6dfdef04d0bc422bdd11aee235e9c785541a5f9d6c3e40a4a2ea7cf273
IEDL.DBID PIMPY
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001130883100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-4990
IngestDate Fri Oct 03 12:53:39 EDT 2025
Fri Jul 25 23:28:43 EDT 2025
Sat Nov 29 10:45:57 EST 2025
Sat Nov 29 07:19:36 EST 2025
Tue Nov 18 20:46:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-181d94f6dfdef04d0bc422bdd11aee235e9c785541a5f9d6c3e40a4a2ea7cf273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6768-8394
0000-0002-6855-6270
0009-0008-8164-8250
0000-0003-4621-2917
0000-0001-7751-4307
OpenAccessLink https://www.proquest.com/publiccontent/docview/2904753501?pq-origsite=%requestingapplication%
PQID 2904753501
PQPubID 5046881
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_9a0aec6ac3e44c41a3bccee25a3ede53
proquest_journals_2904753501
gale_infotracacademiconefile_A782450852
crossref_citationtrail_10_3390_make5040075
crossref_primary_10_3390_make5040075
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_36
Li (ref_43) 2022; 33
ref_13
ref_34
ref_11
ref_10
ref_32
Karayaneva (ref_20) 2021; 9
ref_31
ref_30
Karim (ref_42) 2019; 116
ref_19
ref_18
ref_16
ref_38
ref_15
ref_37
Li (ref_24) 2018; 18
Li (ref_22) 2022; 60
Zhu (ref_21) 2022; 60
Akula (ref_12) 2018; 50
Fullerton (ref_8) 2017; 17
ref_25
ref_23
Wang (ref_33) 2018; 232
ref_45
Gupta (ref_5) 2021; 1
ref_44
ref_41
ref_40
ref_1
ref_3
Sim (ref_14) 2015; 11
Kim (ref_27) 2021; 21
ref_2
ref_29
ref_28
Fu (ref_17) 2020; 8
ref_26
ref_9
Karim (ref_39) 2019; 7
(ref_6) 2019; 7
ref_4
ref_7
Chen (ref_35) 2020; 8
References_xml – ident: ref_11
  doi: 10.1109/ICCS45141.2019.9065460
– ident: ref_10
  doi: 10.1109/CHASE.2017.87
– volume: 21
  start-page: 13522
  year: 2021
  ident: ref_27
  article-title: Human Activity Classification Based on Point Clouds Measured by Millimeter Wave MIMO Radar with Deep Recurrent Neural Networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3068388
– ident: ref_9
– ident: ref_16
  doi: 10.3390/rs11091068
– ident: ref_30
  doi: 10.1109/ECTI-CON49241.2020.9158273
– volume: 8
  start-page: 83791
  year: 2020
  ident: ref_17
  article-title: Sensing Technology for Human Activity Recognition: A Comprehensive Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991891
– ident: ref_31
  doi: 10.1007/978-3-642-24797-2
– ident: ref_3
– ident: ref_38
  doi: 10.1109/ICEIC54506.2022.9748776
– ident: ref_23
  doi: 10.1109/ICSIP49896.2020.9339335
– ident: ref_28
  doi: 10.1109/ICMLA55696.2022.00076
– ident: ref_40
  doi: 10.3390/s21051636
– volume: 7
  start-page: 67718
  year: 2019
  ident: ref_39
  article-title: Insights Into LSTM Fully Convolutional Networks for Time Series Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916828
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_21
  article-title: Continuous Human Activity Recognition with Distributed Radar Sensor Networks and CNN–RNN Architectures
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3230829
– volume: 8
  start-page: 47072
  year: 2020
  ident: ref_35
  article-title: Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977892
– ident: ref_41
  doi: 10.1109/ICAIIC48513.2020.9065078
– ident: ref_26
  doi: 10.1109/IMBIOC.2019.8777855
– ident: ref_34
  doi: 10.1109/ICCE48956.2021.9352085
– ident: ref_1
– ident: ref_18
  doi: 10.1145/3349624.3356768
– volume: 232
  start-page: 03042
  year: 2018
  ident: ref_33
  article-title: Research on Gesture Recognition Method Based on Computer Vision
  publication-title: Matec Web Conf.
  doi: 10.1051/matecconf/201823203042
– ident: ref_44
– ident: ref_29
  doi: 10.1007/1-4020-4295-7
– ident: ref_32
  doi: 10.1007/978-3-540-74048-3
– ident: ref_36
  doi: 10.3390/aerospace7080115
– ident: ref_7
  doi: 10.3390/s19071716
– volume: 9
  start-page: 62984
  year: 2021
  ident: ref_20
  article-title: Unsupervised Doppler Radar Based Activity Recognition for e-Healthcare
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074088
– ident: ref_25
  doi: 10.1109/SNAMS.2019.8931857
– volume: 7
  start-page: 74422
  year: 2019
  ident: ref_6
  article-title: Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921096
– ident: ref_4
– ident: ref_2
  doi: 10.1186/s12889-021-10427-2
– ident: ref_37
  doi: 10.3390/s23115100
– volume: 17
  start-page: 5290
  year: 2017
  ident: ref_8
  article-title: Recognizing Human Activity in Free-Living Using Multiple Body-Worn Accelerometers
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2722105
– volume: 11
  start-page: 679123
  year: 2015
  ident: ref_14
  article-title: Acoustic Sensor Based Recognition of Human Activity in Everyday Life for Smart Home Services
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2015/679123
– ident: ref_19
  doi: 10.1109/ICASSP39728.2021.9414686
– ident: ref_15
– volume: 50
  start-page: 146
  year: 2018
  ident: ref_12
  article-title: Deep learning approach for human action recognition in infrared images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.04.002
– ident: ref_13
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_22
  article-title: Semisupervised Human Activity Recognition with Radar Micro-Doppler Signatures
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 1
  start-page: 100046
  year: 2021
  ident: ref_5
  article-title: Deep learning based human activity recognition (HAR) using wearable sensor data
  publication-title: Int. J. Inf. Manag. Data Insights
– volume: 18
  start-page: 5413
  year: 2018
  ident: ref_24
  article-title: Log-Likelihood Clustering-Enabled Passive RF Sensing for Residential Activity Recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2834739
– volume: 116
  start-page: 237
  year: 2019
  ident: ref_42
  article-title: Multivariate LSTM-FCNs for time series classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.04.014
– ident: ref_45
  doi: 10.1109/ICSP.2016.7877996
– volume: 33
  start-page: 6999
  year: 2022
  ident: ref_43
  article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
SSID ssj0002794104
Score 2.2864566
Snippet Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1493
SubjectTerms Activities of daily living
Algorithms
Annotations
Artificial neural networks
Coding
convolutional variational autoencoder (CVAE)
Data analysis
Data collection
Deep learning
deep neural networks (DNNs)
Doppler radar
dynamic time warping (DTW)
Equalization
Feature extraction
Frames (data processing)
Human activity recognition
human activity recognition (HAR)
Machine learning
Millimeter waves
mm-wave radar sensor
Neural networks
Object recognition (Computers)
Older people
Pattern recognition
Principal components analysis
Privacy
Radar systems
Sensors
Wearable computers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPHgRRcVqlRwKgrA0u5vtNsdWLZ6KlAq9hckkkfqxLf3w9zvZ3UoPihevSxayb5LMvM3MG8bascGu9B4iSHqOCEpuox76NHKJMeFeyaKHstlEPhr1plP1tNPqK-SEVfLAFXAdBQIcdgFTJyXKGFKDdLAnGaTOuqzU-RS52iFTr-V1mpJENKqCvJR4fecD3lwWVmzIKNxxQaVS_2_ncelkhkfssI4Oeb-a1THbc8UJG907t-C1EOoLn2xVV1ecAk4-BgvLaEDOyPIgNTUrNkTmeflznvexag7Bx9s8oXlxyp6HD5O7x6hugxChFOk6Ih9slfRd663zQlphUCaJsTaOgYBIM6cwD9lmMWRe2W5ASoCExEGOnsKTM9Yo5oU7Zxw9GUJkxtB7UqWoXI6W4PKhFqEHpslut8horDXCQ6uKd01cIcCod2Bssvb34EUljfHzsEGA-HtI0LMuH5CVdW1l_ZeVm-wmGEiHXUcTQqiLB-izgn6V7lOgIynWzJIma21tqOvtuNKJEpJ4WSbii_-YzSU7CF3nq6yWFmuslxt3xfbxcz1bLa_LlfgFvhboOw
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Techniques for Radar-Based Continuous Human Activity Recognition
URI https://www.proquest.com/docview/2904753501
https://doaj.org/article/9a0aec6ac3e44c41a3bccee25a3ede53
Volume 5
WOSCitedRecordID wos001130883100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: K7-
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELag5cCFhwBRWCofVkJCspo4TtOcUAu7AiGqqFqkhYtlj-3VCkhK0_L7mUmcsgfgxMWHxJZsz3ge9sw3jJ2mFuYqBCOMXHh0UAonFhAy4aW19K7kIJiu2ESxXi8uL8sqpke3MaxykImdoO7RniluG4XwzDVAN-YzWSYKDe08SV9vfwiqIUVvrbGgxm02JuCtZMTG1fuP1efjnYtE5kP3o0_Ty9Dbn303X31OfExxhjcUU4ff_zcp3ame8_v_d9IP2L1ogvJlzzMP2S1fP2Lrt95veURbveIXA7Rry9Gq5RvjzE6sUOM5TnhW1_WhObS8ewHgS-grUPDNEIzU1I_Zp_OzizfvRKy1IEAl2V6gonelCnMXnA-JcokFJaV1Lk2N9zLLfQkFhbSlJg-lm0PmVWKUkd4UENAGesJGdVP7p4xDQGonubU4TpUZlL4Ah7sfKOFhYeyEvRo2WkMEIqd6GN80OiREFX2DKhN2euy87fE3_txtRRQ7diHQ7O5Ds7vS8Qzq0iTGw9zQ3BXgSjILaCPI3GTe-TybsJdEb01HGycEJmYo4LIIJEsv0ZpSaNDmcsJOBnrreOZb_Zu8z_79-zm7S0Xr-6CYEzba7w7-BbsDP_fX7W7KxquzdbWZdrcD2H4oBLZV_mUa2fkXPkoFZw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceAgQCwV8KEJCiprYTrI5oGqXtmrVElWrRerNOGO7qoBk2exS9U_xGzvOY-kBuPXANXGiOPN5HvbMNwDbUYGJdE4Hmo8sBSipCUboRGB5UfhzJYNON80m0jwfnZ1lpxvwq6-F8WmVvU5sFLWp0O-R7_AslORax2G0O_8R-K5R_nS1b6HRwuLYXl1SyFZ_ONoj-b7l_GB_9vEw6LoKBChDsQzIpJlMusQ4Y10oTVig5LwwJoq0tVzENsPUJ29FOnaZSVBYGWqpudUpOrL29N47sCmFTOIBbE7289PpeleHE7wpwGkLAYXIwp3v-quN_UrxmYw3TF_TIeBvdqAxbgcP_7ff8ggedG40G7e4fwwbtnwC-Z61c9Yxxp6zWU9PWzPyzNlUG70IJmS1DfOcXBflqlrVrDnFYGNsu2iwaZ9QVZVP4fOtTOEZDMqqtM-BoSPEhnFR0HMyE5jZFA3J1_mijZEuhvC-F6XCjkzd9_T4piio8nJXN-Q-hO314HnLIfLnYROPifUQT_zdXKgW56rTIyrTobaYaP_tEmkmokDyc3ishTU2FkN45xGlvHqiD0LdVVnQtDzRlxqTRyjJKY_5ELZ6RKlOb9XqN5xe_Pv2G7h3OPt0ok6O8uOXcJ-T69cm-WzBYLlY2VdwF38uL-rF626JMPhy2_C7BsKEVKo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgLEQgEfipCQok1s53VAaMuyoiparaoiVVyMPbarCkiWzS6Iv8avY5zH0gNw64Fr4kR-fJ6HPfMNwH5iMJPe60jzwpGDktuoQC8ix40J90oWvW6LTeTzeXF6Wi524OeQCxPCKgeZ2ApqW2M4Ix_zMpZkWqdxMvZ9WMRiOnu1_BqFClLhpnUop9FB5Mj9-E7uW_PycEpr_Yzz2ZuT12-jvsJAhDIW64jUmy2lz6y3zsfSxgYl58baJNHOcZG6EvMQyJXo1Jc2Q-FkrKXmTufoSfPTf6_A1VxmRQgnW6Qftuc7nIBOrk6XEihEGY-_6E8uDXsmxDReUIJtrYC_aYRWzc1u_c8TdBtu9sY1m3S74Q7suOouzKfOLVnPI3vGTgbS2oaRvc6OtdWr6IB0uWWBqeu82tSbhrV3G2yCXW0NdjyEWdXVPXh_KUO4D7tVXbkHwNATjuPUGPpOlgJLl6OltfYhlaPQZgQvhmVV2FOsh0ofnxW5WgED6gIGRrC_bbzsmEX-3Owg4GPbJNCBtw_q1ZnqpYsqdawdZjr0XSKNRBgk64enWjjrUjGC5wFdKggt6hDqPveChhXov9SE7ERJpnrKR7A3oEv10qxRv6H18N-vn8J1wpx6dzg_egQ3ONmDXeTPHuyuVxv3GK7ht_V5s3rS7hUGHy8be78AIaFcPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Techniques+for+Radar-Based+Continuous+Human+Activity+Recognition&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Mehta%2C+Ruchita&rft.au=Sharifzadeh%2C+Sara&rft.au=Palade%2C+Vasile&rft.au=Tan%2C+Bo&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=5&rft.issue=4&rft.spage=1493&rft_id=info:doi/10.3390%2Fmake5040075&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon