Deep Learning Techniques for Radar-Based Continuous Human Activity Recognition
Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler...
Saved in:
| Published in: | Machine learning and knowledge extraction Vol. 5; no. 4; pp. 1493 - 1518 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2023
|
| Subjects: | |
| ISSN: | 2504-4990, 2504-4990 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler radar. In this study, two strategies have been employed: the first method uses un-equalized series of activities, whereas the second method utilizes a gradient-based strategy for equalization of the series of activities. The dynamic time warping (DTW) algorithm and Long Short-term Memory (LSTM) techniques have been implemented for the classification of un-equalized and equalized series of activities, respectively. The input for DTW was provided using three strategies. The first approach uses the pixel-level data of frames (UnSup-PLevel). In the other two strategies, a convolutional variational autoencoder (CVAE) is used to extract Un-Supervised Encoded features (UnSup-EnLevel) and Supervised Encoded features (Sup-EnLevel) from the series of Doppler frames. The second approach for equalized data series involves the application of four distinct feature extraction methods: i.e., convolutional neural networks (CNN), supervised and unsupervised CVAE, and principal component Analysis (PCA). The extracted features were considered as an input to the LSTM. This paper presents a comparative analysis of a novel supervised feature extraction pipeline, employing Sup-ENLevel-DTW and Sup-EnLevel-LSTM, against several state-of-the-art unsupervised methods, including UnSUp-EnLevel-DTW, UnSup-EnLevel-LSTM, CNN-LSTM, and PCA-LSTM. The results demonstrate the superiority of the Sup-EnLevel-LSTM strategy. However, the UnSup-PLevel strategy worked surprisingly well without using annotations and frame equalization. |
|---|---|
| AbstractList | Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler radar. In this study, two strategies have been employed: the first method uses un-equalized series of activities, whereas the second method utilizes a gradient-based strategy for equalization of the series of activities. The dynamic time warping (DTW) algorithm and Long Short-term Memory (LSTM) techniques have been implemented for the classification of un-equalized and equalized series of activities, respectively. The input for DTW was provided using three strategies. The first approach uses the pixel-level data of frames (UnSup-PLevel). In the other two strategies, a convolutional variational autoencoder (CVAE) is used to extract Un-Supervised Encoded features (UnSup-EnLevel) and Supervised Encoded features (Sup-EnLevel) from the series of Doppler frames. The second approach for equalized data series involves the application of four distinct feature extraction methods: i.e., convolutional neural networks (CNN), supervised and unsupervised CVAE, and principal component Analysis (PCA). The extracted features were considered as an input to the LSTM. This paper presents a comparative analysis of a novel supervised feature extraction pipeline, employing Sup-ENLevel-DTW and Sup-EnLevel-LSTM, against several state-of-the-art unsupervised methods, including UnSUp-EnLevel-DTW, UnSup-EnLevel-LSTM, CNN-LSTM, and PCA-LSTM. The results demonstrate the superiority of the Sup-EnLevel-LSTM strategy. However, the UnSup-PLevel strategy worked surprisingly well without using annotations and frame equalization. |
| Audience | Academic |
| Author | Daneshkhah, Alireza Sharifzadeh, Sara Palade, Vasile Mehta, Ruchita Karayaneva, Yordanka Tan, Bo |
| Author_xml | – sequence: 1 givenname: Ruchita orcidid: 0009-0008-8164-8250 surname: Mehta fullname: Mehta, Ruchita – sequence: 2 givenname: Sara orcidid: 0000-0003-4621-2917 surname: Sharifzadeh fullname: Sharifzadeh, Sara – sequence: 3 givenname: Vasile orcidid: 0000-0002-6768-8394 surname: Palade fullname: Palade, Vasile – sequence: 4 givenname: Bo orcidid: 0000-0002-6855-6270 surname: Tan fullname: Tan, Bo – sequence: 5 givenname: Alireza orcidid: 0000-0001-7751-4307 surname: Daneshkhah fullname: Daneshkhah, Alireza – sequence: 6 givenname: Yordanka surname: Karayaneva fullname: Karayaneva, Yordanka |
| BookMark | eNptkUtrWzEQhUVJoWmaVf_AhS7LTUYvX2vpuo8ETAshXYuxNHLl2pKrqxvIv68ctxBK0ULDcM43Gp3X7CzlRIy95XAlpYHrPf4kDQpg0C_YuWhlr4yBs2f1K3Y5jlsAEINRHNQ5-_qR6NCtCEuKadPdk_uR4q-Jxi7k0t2hx9J_wJF8t8ypxjTlaexupj2mbuFqfIj1sbsjlzcp1pjTG_Yy4G6kyz_3Bfv--dP98qZffftyu1yseqdA1p7PuTcqzHzwFEB5WDslxNp7zpFISE3GDXOtFUcdjJ85SQpQoSAcXBCDvGC3J67PuLWHEvdYHm3GaJ8auWwslhrdjqxBQHIzPDKUa0S5dq4N0SjJk5aN9e7EOpR83LzabZ5Kas-3woAatNTAm-rqpNpgg8YUci3o2vG0j64lEWLrL4a5UBrmWjQDPxlcyeNYKFgXKx4_qRnjznKwx9jss9ia5_0_nr-r_U_9G1Vzm1M |
| CitedBy_id | crossref_primary_10_3390_s24165450 crossref_primary_10_1016_j_compbiomed_2024_108382 crossref_primary_10_3390_s24072199 crossref_primary_10_3390_computation12020019 crossref_primary_10_1049_cvi2_70014 crossref_primary_10_3390_s25072268 crossref_primary_10_3390_eng6030044 |
| Cites_doi | 10.1109/ICCS45141.2019.9065460 10.1109/CHASE.2017.87 10.1109/JSEN.2021.3068388 10.3390/rs11091068 10.1109/ECTI-CON49241.2020.9158273 10.1109/ACCESS.2020.2991891 10.1007/978-3-642-24797-2 10.1109/ICEIC54506.2022.9748776 10.1109/ICSIP49896.2020.9339335 10.1109/ICMLA55696.2022.00076 10.3390/s21051636 10.1109/ACCESS.2019.2916828 10.1109/TGRS.2022.3230829 10.1109/ACCESS.2020.2977892 10.1109/ICAIIC48513.2020.9065078 10.1109/IMBIOC.2019.8777855 10.1109/ICCE48956.2021.9352085 10.1145/3349624.3356768 10.1051/matecconf/201823203042 10.1007/1-4020-4295-7 10.1007/978-3-540-74048-3 10.3390/aerospace7080115 10.3390/s19071716 10.1109/ACCESS.2021.3074088 10.1109/SNAMS.2019.8931857 10.1109/ACCESS.2019.2921096 10.1186/s12889-021-10427-2 10.3390/s23115100 10.1109/JSEN.2017.2722105 10.1155/2015/679123 10.1109/ICASSP39728.2021.9414686 10.1016/j.cogsys.2018.04.002 10.1109/JSEN.2018.2834739 10.1016/j.neunet.2019.04.014 10.1109/ICSP.2016.7877996 10.1109/TNNLS.2021.3084827 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
| DOI | 10.3390/make5040075 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-4990 |
| EndPage | 1518 |
| ExternalDocumentID | oai_doaj_org_article_9a0aec6ac3e44c41a3bccee25a3ede53 A782450852 10_3390_make5040075 |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GroupedDBID | AADQD AAFWJ AAYXX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC K7- MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c403t-181d94f6dfdef04d0bc422bdd11aee235e9c785541a5f9d6c3e40a4a2ea7cf273 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001130883100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-4990 |
| IngestDate | Fri Oct 03 12:53:39 EDT 2025 Fri Jul 25 23:28:43 EDT 2025 Sat Nov 29 10:45:57 EST 2025 Sat Nov 29 07:19:36 EST 2025 Tue Nov 18 20:46:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c403t-181d94f6dfdef04d0bc422bdd11aee235e9c785541a5f9d6c3e40a4a2ea7cf273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6768-8394 0000-0002-6855-6270 0009-0008-8164-8250 0000-0003-4621-2917 0000-0001-7751-4307 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2904753501?pq-origsite=%requestingapplication% |
| PQID | 2904753501 |
| PQPubID | 5046881 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9a0aec6ac3e44c41a3bccee25a3ede53 proquest_journals_2904753501 gale_infotracacademiconefile_A782450852 crossref_citationtrail_10_3390_make5040075 crossref_primary_10_3390_make5040075 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Machine learning and knowledge extraction |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_36 Li (ref_43) 2022; 33 ref_13 ref_34 ref_11 ref_10 ref_32 Karayaneva (ref_20) 2021; 9 ref_31 ref_30 Karim (ref_42) 2019; 116 ref_19 ref_18 ref_16 ref_38 ref_15 ref_37 Li (ref_24) 2018; 18 Li (ref_22) 2022; 60 Zhu (ref_21) 2022; 60 Akula (ref_12) 2018; 50 Fullerton (ref_8) 2017; 17 ref_25 ref_23 Wang (ref_33) 2018; 232 ref_45 Gupta (ref_5) 2021; 1 ref_44 ref_41 ref_40 ref_1 ref_3 Sim (ref_14) 2015; 11 Kim (ref_27) 2021; 21 ref_2 ref_29 ref_28 Fu (ref_17) 2020; 8 ref_26 ref_9 Karim (ref_39) 2019; 7 (ref_6) 2019; 7 ref_4 ref_7 Chen (ref_35) 2020; 8 |
| References_xml | – ident: ref_11 doi: 10.1109/ICCS45141.2019.9065460 – ident: ref_10 doi: 10.1109/CHASE.2017.87 – volume: 21 start-page: 13522 year: 2021 ident: ref_27 article-title: Human Activity Classification Based on Point Clouds Measured by Millimeter Wave MIMO Radar with Deep Recurrent Neural Networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3068388 – ident: ref_9 – ident: ref_16 doi: 10.3390/rs11091068 – ident: ref_30 doi: 10.1109/ECTI-CON49241.2020.9158273 – volume: 8 start-page: 83791 year: 2020 ident: ref_17 article-title: Sensing Technology for Human Activity Recognition: A Comprehensive Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991891 – ident: ref_31 doi: 10.1007/978-3-642-24797-2 – ident: ref_3 – ident: ref_38 doi: 10.1109/ICEIC54506.2022.9748776 – ident: ref_23 doi: 10.1109/ICSIP49896.2020.9339335 – ident: ref_28 doi: 10.1109/ICMLA55696.2022.00076 – ident: ref_40 doi: 10.3390/s21051636 – volume: 7 start-page: 67718 year: 2019 ident: ref_39 article-title: Insights Into LSTM Fully Convolutional Networks for Time Series Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916828 – volume: 60 start-page: 1 year: 2022 ident: ref_21 article-title: Continuous Human Activity Recognition with Distributed Radar Sensor Networks and CNN–RNN Architectures publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3230829 – volume: 8 start-page: 47072 year: 2020 ident: ref_35 article-title: Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977892 – ident: ref_41 doi: 10.1109/ICAIIC48513.2020.9065078 – ident: ref_26 doi: 10.1109/IMBIOC.2019.8777855 – ident: ref_34 doi: 10.1109/ICCE48956.2021.9352085 – ident: ref_1 – ident: ref_18 doi: 10.1145/3349624.3356768 – volume: 232 start-page: 03042 year: 2018 ident: ref_33 article-title: Research on Gesture Recognition Method Based on Computer Vision publication-title: Matec Web Conf. doi: 10.1051/matecconf/201823203042 – ident: ref_44 – ident: ref_29 doi: 10.1007/1-4020-4295-7 – ident: ref_32 doi: 10.1007/978-3-540-74048-3 – ident: ref_36 doi: 10.3390/aerospace7080115 – ident: ref_7 doi: 10.3390/s19071716 – volume: 9 start-page: 62984 year: 2021 ident: ref_20 article-title: Unsupervised Doppler Radar Based Activity Recognition for e-Healthcare publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074088 – ident: ref_25 doi: 10.1109/SNAMS.2019.8931857 – volume: 7 start-page: 74422 year: 2019 ident: ref_6 article-title: Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921096 – ident: ref_4 – ident: ref_2 doi: 10.1186/s12889-021-10427-2 – ident: ref_37 doi: 10.3390/s23115100 – volume: 17 start-page: 5290 year: 2017 ident: ref_8 article-title: Recognizing Human Activity in Free-Living Using Multiple Body-Worn Accelerometers publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2722105 – volume: 11 start-page: 679123 year: 2015 ident: ref_14 article-title: Acoustic Sensor Based Recognition of Human Activity in Everyday Life for Smart Home Services publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2015/679123 – ident: ref_19 doi: 10.1109/ICASSP39728.2021.9414686 – ident: ref_15 – volume: 50 start-page: 146 year: 2018 ident: ref_12 article-title: Deep learning approach for human action recognition in infrared images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.04.002 – ident: ref_13 – volume: 60 start-page: 1 year: 2022 ident: ref_22 article-title: Semisupervised Human Activity Recognition with Radar Micro-Doppler Signatures publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 1 start-page: 100046 year: 2021 ident: ref_5 article-title: Deep learning based human activity recognition (HAR) using wearable sensor data publication-title: Int. J. Inf. Manag. Data Insights – volume: 18 start-page: 5413 year: 2018 ident: ref_24 article-title: Log-Likelihood Clustering-Enabled Passive RF Sensing for Residential Activity Recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2834739 – volume: 116 start-page: 237 year: 2019 ident: ref_42 article-title: Multivariate LSTM-FCNs for time series classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.04.014 – ident: ref_45 doi: 10.1109/ICSP.2016.7877996 – volume: 33 start-page: 6999 year: 2022 ident: ref_43 article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 |
| SSID | ssj0002794104 |
| Score | 2.2864566 |
| Snippet | Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1493 |
| SubjectTerms | Activities of daily living Algorithms Annotations Artificial neural networks Coding convolutional variational autoencoder (CVAE) Data analysis Data collection Deep learning deep neural networks (DNNs) Doppler radar dynamic time warping (DTW) Equalization Feature extraction Frames (data processing) Human activity recognition human activity recognition (HAR) Machine learning Millimeter waves mm-wave radar sensor Neural networks Object recognition (Computers) Older people Pattern recognition Principal components analysis Privacy Radar systems Sensors Wearable computers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPHgRRcVqlRwKgrA0u5vtNsdWLZ6KlAq9hckkkfqxLf3w9zvZ3UoPihevSxayb5LMvM3MG8bascGu9B4iSHqOCEpuox76NHKJMeFeyaKHstlEPhr1plP1tNPqK-SEVfLAFXAdBQIcdgFTJyXKGFKDdLAnGaTOuqzU-RS52iFTr-V1mpJENKqCvJR4fecD3lwWVmzIKNxxQaVS_2_ncelkhkfssI4Oeb-a1THbc8UJG907t-C1EOoLn2xVV1ecAk4-BgvLaEDOyPIgNTUrNkTmeflznvexag7Bx9s8oXlxyp6HD5O7x6hugxChFOk6Ih9slfRd663zQlphUCaJsTaOgYBIM6cwD9lmMWRe2W5ASoCExEGOnsKTM9Yo5oU7Zxw9GUJkxtB7UqWoXI6W4PKhFqEHpslut8horDXCQ6uKd01cIcCod2Bssvb34EUljfHzsEGA-HtI0LMuH5CVdW1l_ZeVm-wmGEiHXUcTQqiLB-izgn6V7lOgIynWzJIma21tqOvtuNKJEpJ4WSbii_-YzSU7CF3nq6yWFmuslxt3xfbxcz1bLa_LlfgFvhboOw priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning Techniques for Radar-Based Continuous Human Activity Recognition |
| URI | https://www.proquest.com/docview/2904753501 https://doaj.org/article/9a0aec6ac3e44c41a3bccee25a3ede53 |
| Volume | 5 |
| WOSCitedRecordID | wos001130883100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: K7- dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELag5cCFhwBRWCofVkJCspo4TtOcUAu7AiGqqFqkhYtlj-3VCkhK0_L7mUmcsgfgxMWHxJZsz3ge9sw3jJ2mFuYqBCOMXHh0UAonFhAy4aW19K7kIJiu2ESxXi8uL8sqpke3MaxykImdoO7RniluG4XwzDVAN-YzWSYKDe08SV9vfwiqIUVvrbGgxm02JuCtZMTG1fuP1efjnYtE5kP3o0_Ty9Dbn303X31OfExxhjcUU4ff_zcp3ame8_v_d9IP2L1ogvJlzzMP2S1fP2Lrt95veURbveIXA7Rry9Gq5RvjzE6sUOM5TnhW1_WhObS8ewHgS-grUPDNEIzU1I_Zp_OzizfvRKy1IEAl2V6gonelCnMXnA-JcokFJaV1Lk2N9zLLfQkFhbSlJg-lm0PmVWKUkd4UENAGesJGdVP7p4xDQGonubU4TpUZlL4Ah7sfKOFhYeyEvRo2WkMEIqd6GN80OiREFX2DKhN2euy87fE3_txtRRQ7diHQ7O5Ds7vS8Qzq0iTGw9zQ3BXgSjILaCPI3GTe-TybsJdEb01HGycEJmYo4LIIJEsv0ZpSaNDmcsJOBnrreOZb_Zu8z_79-zm7S0Xr-6CYEzba7w7-BbsDP_fX7W7KxquzdbWZdrcD2H4oBLZV_mUa2fkXPkoFZw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceAgQCwV8KEJCiprYTrI5oGqXtmrVElWrRerNOGO7qoBk2exS9U_xGzvOY-kBuPXANXGiOPN5HvbMNwDbUYGJdE4Hmo8sBSipCUboRGB5UfhzJYNON80m0jwfnZ1lpxvwq6-F8WmVvU5sFLWp0O-R7_AslORax2G0O_8R-K5R_nS1b6HRwuLYXl1SyFZ_ONoj-b7l_GB_9vEw6LoKBChDsQzIpJlMusQ4Y10oTVig5LwwJoq0tVzENsPUJ29FOnaZSVBYGWqpudUpOrL29N47sCmFTOIBbE7289PpeleHE7wpwGkLAYXIwp3v-quN_UrxmYw3TF_TIeBvdqAxbgcP_7ff8ggedG40G7e4fwwbtnwC-Z61c9Yxxp6zWU9PWzPyzNlUG70IJmS1DfOcXBflqlrVrDnFYGNsu2iwaZ9QVZVP4fOtTOEZDMqqtM-BoSPEhnFR0HMyE5jZFA3J1_mijZEuhvC-F6XCjkzd9_T4piio8nJXN-Q-hO314HnLIfLnYROPifUQT_zdXKgW56rTIyrTobaYaP_tEmkmokDyc3ishTU2FkN45xGlvHqiD0LdVVnQtDzRlxqTRyjJKY_5ELZ6RKlOb9XqN5xe_Pv2G7h3OPt0ok6O8uOXcJ-T69cm-WzBYLlY2VdwF38uL-rF626JMPhy2_C7BsKEVKo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgLEQgEfipCQok1s53VAaMuyoiparaoiVVyMPbarCkiWzS6Iv8avY5zH0gNw64Fr4kR-fJ6HPfMNwH5iMJPe60jzwpGDktuoQC8ix40J90oWvW6LTeTzeXF6Wi524OeQCxPCKgeZ2ApqW2M4Ix_zMpZkWqdxMvZ9WMRiOnu1_BqFClLhpnUop9FB5Mj9-E7uW_PycEpr_Yzz2ZuT12-jvsJAhDIW64jUmy2lz6y3zsfSxgYl58baJNHOcZG6EvMQyJXo1Jc2Q-FkrKXmTufoSfPTf6_A1VxmRQgnW6Qftuc7nIBOrk6XEihEGY-_6E8uDXsmxDReUIJtrYC_aYRWzc1u_c8TdBtu9sY1m3S74Q7suOouzKfOLVnPI3vGTgbS2oaRvc6OtdWr6IB0uWWBqeu82tSbhrV3G2yCXW0NdjyEWdXVPXh_KUO4D7tVXbkHwNATjuPUGPpOlgJLl6OltfYhlaPQZgQvhmVV2FOsh0ofnxW5WgED6gIGRrC_bbzsmEX-3Owg4GPbJNCBtw_q1ZnqpYsqdawdZjr0XSKNRBgk64enWjjrUjGC5wFdKggt6hDqPveChhXov9SE7ERJpnrKR7A3oEv10qxRv6H18N-vn8J1wpx6dzg_egQ3ONmDXeTPHuyuVxv3GK7ht_V5s3rS7hUGHy8be78AIaFcPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Techniques+for+Radar-Based+Continuous+Human+Activity+Recognition&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Mehta%2C+Ruchita&rft.au=Sharifzadeh%2C+Sara&rft.au=Palade%2C+Vasile&rft.au=Tan%2C+Bo&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2504-4990&rft.volume=5&rft.issue=4&rft.spage=1493&rft_id=info:doi/10.3390%2Fmake5040075&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |