Deep Learning Techniques for Radar-Based Continuous Human Activity Recognition

Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning and knowledge extraction Ročník 5; číslo 4; s. 1493 - 1518
Hlavní autoři: Mehta, Ruchita, Sharifzadeh, Sara, Palade, Vasile, Tan, Bo, Daneshkhah, Alireza, Karayaneva, Yordanka
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2023
Témata:
ISSN:2504-4990, 2504-4990
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Human capability to perform routine tasks declines with age and age-related problems. Remote human activity recognition (HAR) is beneficial for regular monitoring of the elderly population. This paper addresses the problem of the continuous detection of daily human activities using a mm-wave Doppler radar. In this study, two strategies have been employed: the first method uses un-equalized series of activities, whereas the second method utilizes a gradient-based strategy for equalization of the series of activities. The dynamic time warping (DTW) algorithm and Long Short-term Memory (LSTM) techniques have been implemented for the classification of un-equalized and equalized series of activities, respectively. The input for DTW was provided using three strategies. The first approach uses the pixel-level data of frames (UnSup-PLevel). In the other two strategies, a convolutional variational autoencoder (CVAE) is used to extract Un-Supervised Encoded features (UnSup-EnLevel) and Supervised Encoded features (Sup-EnLevel) from the series of Doppler frames. The second approach for equalized data series involves the application of four distinct feature extraction methods: i.e., convolutional neural networks (CNN), supervised and unsupervised CVAE, and principal component Analysis (PCA). The extracted features were considered as an input to the LSTM. This paper presents a comparative analysis of a novel supervised feature extraction pipeline, employing Sup-ENLevel-DTW and Sup-EnLevel-LSTM, against several state-of-the-art unsupervised methods, including UnSUp-EnLevel-DTW, UnSup-EnLevel-LSTM, CNN-LSTM, and PCA-LSTM. The results demonstrate the superiority of the Sup-EnLevel-LSTM strategy. However, the UnSup-PLevel strategy worked surprisingly well without using annotations and frame equalization.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-4990
2504-4990
DOI:10.3390/make5040075