A Numerical Simulation Method for Investigating the Fluid–Structure–Ice Coupling Mechanism of a Wedge Breaking through Ice into Water

We aimed to investigate the fluid–solid–ice coupling mechanism as structures break through ice into water. Using LS–DYNA finite element software, a numerical simulation method is established, based on the ALE flow–solid coupling method, and the penalty function contact algorithm, which describes the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 14; číslo 20; s. 9204
Hlavní autori: Wang, Fucun, Lu, Yongyi, Zhao, Zhiqing, Qiu, Bingsen, Mu, Lixiao, Wang, Xiaoyu, Jin, Yeqing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.10.2024
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We aimed to investigate the fluid–solid–ice coupling mechanism as structures break through ice into water. Using LS–DYNA finite element software, a numerical simulation method is established, based on the ALE flow–solid coupling method, and the penalty function contact algorithm, which describes the structure–ice–water coupling interaction. The Eulerian algorithm is used to describe the air and water domains, while the Lagrange method is applied to the wedge and ice structure. The mechanical properties of ice are characterized using the elastic–plastic failure strain model. The feasibility of simulating the entry of structures into water via the ALE method is demonstrated by comparing the experimental and simulation results of wedges entering into water. The applicability of the ice material model in simulating collision–induced breakup is verified by comparing a simulation of a rigid plate hitting a spherical head of ice, with results from the ISO standard. The effects of water during icebreaking are assessed by simulating a wedge breaking through ice into water, as well as through ice without water. Additionally, the ice breakup and motion response of the wedge under different working conditions are compared by varying the wedge mass and icebreaking speed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app14209204