A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network

The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main...

Full description

Saved in:
Bibliographic Details
Published in:CAAI Transactions on Intelligence Technology Vol. 8; no. 4; pp. 1124 - 1139
Main Authors: Khan, Junaid, Lee, Eunkyu, Kim, Kyungsup
Format: Journal Article
Language:English
Published: Beijing John Wiley & Sons, Inc 01.12.2023
Wiley
Subjects:
ISSN:2468-2322, 2468-6557, 2468-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main components: (1) the alpha–beta filter algorithm is the main prediction module, and (2) the learning module is a feedforward artificial neural network (FF‐ANN). Furthermore, the model uses two inputs, temperature sensor and humidity sensor data, and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings. Using the novel proposed technique, prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network, and also reduces the root mean square error (RMSE) and mean absolute error (MAE). We carried out different experiments with different experimental setups. The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter. A higher prediction accuracy was achieved, and the MAE and RMSE were 35.1%–38.2% respectively. The final proposed model results show increased performance when compared to traditional methods.
AbstractList The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main components: (1) the alpha–beta filter algorithm is the main prediction module, and (2) the learning module is a feedforward artificial neural network (FF‐ANN). Furthermore, the model uses two inputs, temperature sensor and humidity sensor data, and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings. Using the novel proposed technique, prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network, and also reduces the root mean square error (RMSE) and mean absolute error (MAE). We carried out different experiments with different experimental setups. The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter. A higher prediction accuracy was achieved, and the MAE and RMSE were 35.1%–38.2% respectively. The final proposed model results show increased performance when compared to traditional methods.
Abstract The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main components: (1) the alpha–beta filter algorithm is the main prediction module, and (2) the learning module is a feedforward artificial neural network (FF‐ANN). Furthermore, the model uses two inputs, temperature sensor and humidity sensor data, and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings. Using the novel proposed technique, prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network, and also reduces the root mean square error (RMSE) and mean absolute error (MAE). We carried out different experiments with different experimental setups. The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter. A higher prediction accuracy was achieved, and the MAE and RMSE were 35.1%–38.2% respectively. The final proposed model results show increased performance when compared to traditional methods.
Author Lee, Eunkyu
Kim, Kyungsup
Khan, Junaid
Author_xml – sequence: 1
  givenname: Junaid
  orcidid: 0000-0002-2393-3132
  surname: Khan
  fullname: Khan, Junaid
  organization: Chungnam National University
– sequence: 2
  givenname: Eunkyu
  surname: Lee
  fullname: Lee, Eunkyu
  organization: Chungnam National University
– sequence: 3
  givenname: Kyungsup
  surname: Kim
  fullname: Kim, Kyungsup
  email: sclkim@cnu.ac.kr
  organization: Chungnam National University
BookMark eNp9kc1q3DAUhUVJoGmSTZ5A0F1hUv3bWoahPwOBbpK1uNbPWFPHmsoahtn1HfKGfZLKcQullK6udPnO4XDPG3Q2ptEjdEPJLSVCv7exsFvKqGhfoQsmVLtinLGzP96v0fU07QghVGsteXOB8h3u47b3Ge-zd9GWmEYM1h4y2NOP788dTN5hGPY9zD9fAIc4lMrDsE05lv4JH6Y4bnHpPQ7eu5DyEXLV5BJDtBEGPPpqN49yTPnrFToPMEz--te8RI8fPzysP6_uv3zarO_uV1YQ3q58A0o32kpBiJZOCMqDVcAktNCJwDXxVgUnAYR1xKqGdsyJVtYEoaWk4Zdos_i6BDuzz_EJ8skkiOZlkfLWzBnt4E0rg9ANldK21UJxLXxwpKMQFO8009Xr7eK1z-nbwU_F7NIhjzW-4URTraSgqlJkoWxO05R9MLUSmE9aMsTBUGLmouYtMy9FVcm7vyS_g_4Tpgt8jIM__Yc0680DWzQ_Af_vqBw
CitedBy_id crossref_primary_10_7454_jessd_v7i2_1258
crossref_primary_10_1109_ACCESS_2024_3410316
crossref_primary_10_1016_j_enganabound_2023_07_007
crossref_primary_10_1016_j_mtcomm_2023_106718
crossref_primary_10_1016_j_icheatmasstransfer_2024_107829
crossref_primary_10_3390_buildings14051339
crossref_primary_10_3390_coatings13050838
crossref_primary_10_1016_j_compbiomed_2025_110926
crossref_primary_10_1016_j_mtcomm_2024_109765
crossref_primary_10_3390_app13042743
crossref_primary_10_3390_app132312850
crossref_primary_10_32604_cmc_2024_056222
crossref_primary_10_3390_buildings14030662
crossref_primary_10_3390_buildings14051382
crossref_primary_10_1007_s12206_024_0811_8
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_1007_s00419_024_02726_y
crossref_primary_10_1016_j_jwpe_2024_105072
crossref_primary_10_3390_app132212092
crossref_primary_10_1515_tsd_2024_2623
crossref_primary_10_3390_buildings13102500
crossref_primary_10_3390_make7020029
crossref_primary_10_1016_j_engfracmech_2024_110336
crossref_primary_10_1109_ACCESS_2023_3236504
crossref_primary_10_1016_j_procs_2024_10_097
crossref_primary_10_1109_TIV_2023_3331969
crossref_primary_10_1007_s11837_024_06904_9
crossref_primary_10_1109_ACCESS_2023_3287851
crossref_primary_10_1007_s11036_023_02109_7
crossref_primary_10_1109_ACCESS_2024_3430830
crossref_primary_10_3390_agriculture13091700
crossref_primary_10_1109_ACCESS_2024_3377690
Cites_doi 10.1016/j.heliyon.2018.e00938
10.3390/technologies7020030
10.1109/ICACCCT.2014.7019323
10.3390/s17061344
10.1109/access.2020.3037081
10.1016/B978-0-12-811318-9.00018-1
10.3390/jsan10020029
10.1109/jsen.2018.2806932
10.1038/nature14236
10.3390/sym11010094
10.1609/aaai.v29i1.9513
10.3390/s18082552
10.1162/neco.1995.7.5.867
10.3390/electronics7100222
10.3390/app12199429
10.3233/ifs‐141183
10.1016/j.geoderma.2016.09.027
10.1109/jsyst.2020.2990409
10.1109/taes.1987.310893
10.21437/Interspeech.2014-80
10.3390/s19183946
10.1109/access.2019.2915381
10.1007/s13042‐011‐0019‐y
10.1016/S0169-2070(97)00044-7
10.3115/v1/D14-1181
10.1007/s12559‐014‐9255‐2
10.1109/access.2021.3073876
10.1088/1742‐6596/659/1/012022
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1049/cit2.12148
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 1139
ExternalDocumentID oai_doaj_org_article_85f497155c8d486394efd0b1af63b929
10_1049_cit2_12148
CIT212148
Genre article
GroupedDBID 0R~
0SF
1OC
24P
6I.
AACTN
AAEDW
AAFTH
AAHHS
AAHJG
AAJGR
AALRI
AAXUO
ABMAC
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACXQS
ADBBV
ADVLN
ADZOD
AEEZP
AEQDE
AEXQZ
AFKRA
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M41
M43
NCXOZ
O9-
OCL
OK1
PIMPY
RIE
RIG
ROL
RUI
SSZ
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEFGJ
AEUPX
AFFHD
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4038-e7a6979c540095d4413fc6a25a8ab4f390ec6fd5aa4cd0c671b2d485edff81073
IEDL.DBID K7-
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888647200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2468-2322
2468-6557
IngestDate Fri Oct 03 12:30:30 EDT 2025
Sat Jul 26 00:12:27 EDT 2025
Tue Nov 18 20:57:24 EST 2025
Wed Oct 29 21:12:12 EDT 2025
Wed Jan 22 16:15:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4038-e7a6979c540095d4413fc6a25a8ab4f390ec6fd5aa4cd0c671b2d485edff81073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2393-3132
OpenAccessLink https://www.proquest.com/docview/3091965416?pq-origsite=%requestingapplication%
PQID 3091965416
PQPubID 6852857
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_85f497155c8d486394efd0b1af63b929
proquest_journals_3091965416
crossref_citationtrail_10_1049_cit2_12148
crossref_primary_10_1049_cit2_12148
wiley_primary_10_1049_cit2_12148_CIT212148
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 9
2019; 7
2011; 2
2019; 11
2019; 19
2020; 15
2004
1992
1987; AES‐23
1995; 7
2003; 12
2020; 8
2018; 7
2018; 18
2021; 10
2015; 29
2018; 4
2017; 17
2015; 333
2022; 12
2015; 518
2017
2015; 659
2014
2017; 285
2014; 6
1998; 14
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Dostal Z. (e_1_2_10_23_1) 2003; 12
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Munu M. (e_1_2_10_25_1) 1992
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – volume: 12
  issue: 19
  year: 2022
  article-title: A performance evaluation of the alpha‐beta (α‐β) filter algorithm with different learning models: DBN, DELM, and SVM
  publication-title: Appl. Sci.
– volume: 4
  issue: 11
  year: 2018
  article-title: State‐of‐the‐art in artificial neural network applications: a survey
  publication-title: Heliyon
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  article-title: Forecasting with artificial neural networks:: the state of the art
  publication-title: Int. J. Forecast.
– volume: 11
  issue: 1
  year: 2019
  article-title: Improving accuracy of the Kalman filter algorithm in dynamic conditions using ANN‐based learning module
  publication-title: Symmetry
– start-page: 985
  year: 2004
  end-page: 990
– volume: 9
  start-page: 61548
  year: 2021
  end-page: 61564
  article-title: An improved alpha beta filter using a deep extreme learning machine
  publication-title: IEEE Access
– volume: 18
  start-page: 3016
  issue: 7
  year: 2018
  end-page: 3027
  article-title: Adaptive‐gain regulation of extended Kalman filter for use in inertial and magnetic units based on hidden Markov model
  publication-title: IEEE Sensor. J.
– volume: 8
  start-page: 204744
  year: 2020
  end-page: 204762
  article-title: Dynamic user preference parameters selection and energy consumption optimization for smart homes using deep extreme learning machine and bat algorithm
  publication-title: IEEE Access
– volume: 17
  issue: 6
  year: 2017
  article-title: Feed‐forward neural network prediction of the mechanical properties of sandcrete materials
  publication-title: Sensors
– volume: 7
  issue: 10
  year: 2018
  article-title: A prediction methodology of energy consumption based on deep extreme learning machine and comparative analysis in residential buildings
  publication-title: Electronics
– start-page: 1369
  year: 2014
  end-page: 1373
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  end-page: 390
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cognit. Comput.
– volume: 10
  issue: 2
  year: 2021
  article-title: A feed‐forward neural network approach for energy‐based acoustic source localization
  publication-title: J. Sens. Actuator Netw.
– volume: 12
  start-page: 56
  issue: 3
  year: 2003
  end-page: 59
  article-title: Exploitation of higher order moments increase the tracking aircraft by the extended alpha‐beta filter
  publication-title: Radioengineering‐Prague
– year: 2014
– volume: 15
  start-page: 771
  issue: 1
  year: 2020
  end-page: 779
  article-title: Quality of service constrained‐resource allocation scheme for multiple target tracking in radar sensor network
  publication-title: IEEE Syst. J.
– volume: 659
  year: 2015
  article-title: Performance evaluation of iterated extended Kalman filter with variable step‐length
  publication-title: J. Phys. Conf. Ser.
– volume: 18
  issue: 8
  year: 2018
  article-title: An intelligent system for monitoring skin diseases
  publication-title: Sensors
– volume: 7
  issue: 2
  year: 2019
  article-title: A framework for prediction of household energy consumption using feed forward back propagation neural network
  publication-title: Technologies
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  end-page: 122
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 19
  issue: 18
  year: 2019
  article-title: Improving accuracy of the alpha–beta filter algorithm using an ANN‐based learning mechanism in indoor navigation system
  publication-title: Sensors
– start-page: 333
  year: 2017
  end-page: 344
– volume: 333
  start-page: 2267
  issue: 1
  year: 2015
  end-page: 2273
  article-title: Recurrent convolutional neural networks for text classification
  publication-title: AAAI
– start-page: 196
  year: 1992
  end-page: 199
– volume: 285
  start-page: 76
  year: 2017
  end-page: 93
  article-title: Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter
  publication-title: Geoderma
– volume: AES‐23
  start-page: 592
  issue: 4
  year: 1987
  end-page: 594
  article-title: Alpha‐beta filter with correlated measurement noise
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  article-title: Human‐level control through deep reinforcement learning
  publication-title: Nature
– volume: 7
  start-page: 867
  issue: 5
  year: 1995
  end-page: 888
  article-title: Methods for combining experts’ probability assessments
  publication-title: Neural Comput.
– volume: 7
  start-page: 60299
  year: 2019
  end-page: 60309
  article-title: Innovative target tracking method combined adaptive $\alpha $‐$\beta $ filter with robust BPNN
  publication-title: IEEE Access
– volume: 29
  start-page: 479
  issue: 2
  year: 2015
  end-page: 488
  article-title: Attitude estimation using a Neuro‐Fuzzy tuning based adaptive Kalman filter
  publication-title: J. Intell. Fuzzy Syst.
– ident: e_1_2_10_27_1
  doi: 10.1016/j.heliyon.2018.e00938
– ident: e_1_2_10_10_1
  doi: 10.3390/technologies7020030
– ident: e_1_2_10_12_1
  doi: 10.1109/ICACCCT.2014.7019323
– ident: e_1_2_10_22_1
  doi: 10.3390/s17061344
– ident: e_1_2_10_4_1
  doi: 10.1109/access.2020.3037081
– ident: e_1_2_10_15_1
  doi: 10.1016/B978-0-12-811318-9.00018-1
– ident: e_1_2_10_11_1
  doi: 10.3390/jsan10020029
– ident: e_1_2_10_20_1
  doi: 10.1109/jsen.2018.2806932
– ident: e_1_2_10_21_1
  doi: 10.1038/nature14236
– ident: e_1_2_10_5_1
  doi: 10.3390/sym11010094
– ident: e_1_2_10_28_1
  doi: 10.1609/aaai.v29i1.9513
– ident: e_1_2_10_34_1
  doi: 10.3390/s18082552
– ident: e_1_2_10_18_1
  doi: 10.1162/neco.1995.7.5.867
– ident: e_1_2_10_6_1
  doi: 10.3390/electronics7100222
– ident: e_1_2_10_17_1
  doi: 10.3390/app12199429
– ident: e_1_2_10_19_1
  doi: 10.3233/ifs‐141183
– ident: e_1_2_10_33_1
  doi: 10.1016/j.geoderma.2016.09.027
– ident: e_1_2_10_14_1
  doi: 10.1109/jsyst.2020.2990409
– ident: e_1_2_10_13_1
  doi: 10.1109/taes.1987.310893
– ident: e_1_2_10_29_1
– ident: e_1_2_10_9_1
– ident: e_1_2_10_31_1
  doi: 10.21437/Interspeech.2014-80
– ident: e_1_2_10_2_1
  doi: 10.3390/s19183946
– ident: e_1_2_10_24_1
  doi: 10.1109/access.2019.2915381
– ident: e_1_2_10_8_1
  doi: 10.1007/s13042‐011‐0019‐y
– ident: e_1_2_10_26_1
  doi: 10.1016/S0169-2070(97)00044-7
– ident: e_1_2_10_30_1
  doi: 10.3115/v1/D14-1181
– volume: 12
  start-page: 56
  issue: 3
  year: 2003
  ident: e_1_2_10_23_1
  article-title: Exploitation of higher order moments increase the tracking aircraft by the extended alpha‐beta filter
  publication-title: Radioengineering‐Prague
– ident: e_1_2_10_7_1
– ident: e_1_2_10_16_1
  doi: 10.1007/s12559‐014‐9255‐2
– start-page: 196
  volume-title: 92 International Conference on Radar
  year: 1992
  ident: e_1_2_10_25_1
– ident: e_1_2_10_3_1
  doi: 10.1109/access.2021.3073876
– ident: e_1_2_10_32_1
  doi: 10.1088/1742‐6596/659/1/012022
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.482369
Snippet The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the...
Abstract The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1124
SubjectTerms Accuracy
Algorithms
alpha beta filter
Artificial intelligence
artificial neural network
Artificial neural networks
Back propagation
Back propagation networks
Classification
Deep learning
Kalman filters
Machine learning
Methods
Modules
navigation
Navigation systems
Neural networks
Performance evaluation
Performance prediction
prediction accuracy
Root-mean-square errors
Sensors
target tracking problems
Temperature sensors
Tracking systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA6yePAiiorrHwG9KBTbJk2To4qiIOJBYW8lzY-7oLtLd1fw5jv4hj6JM2l3qSB68dQ25JDOTDLfJJNvCDkyUpQycWnEwB4iDhFKpHFHzADWdtYwmepA4nqb393JXk_dt0p9YU5YTQ9cC-5UZp6rHLyekZZL8KfceRuXifaCleDbcfWNc9UKpsLuCuCejOVzPlKuTs1gmiKVAhb6aXmgQNT_DV22MWpwMldrZLVBh_SsHtU6WXLDDVKd0X7IxqDjCo9VUJRUGzOrtHn7fP9AR2RpuDSLX26qqR_gITi0PY0g-O-_UExvf6IA9qgHdwVAFZNlKf59zSBBkdcyPEJW-CZ5vLp8uLiOmlIJkeExLFku10LlygD-AsxkAeMwb4ROMy11yT1TsTPC20xrbmxsRJ6UKYgT1OG9hAiQbZHOcDR024SWjgEIgInsQG42SXTsktKXUginrJS-S47n4itMwyOO5Syei3CezRW2pkUQdZccLvqOa_aMH3udoxYWPZDxOjSAHRSNHRR_2UGX7M11WDTTcFIwQEMKK52LLjkJev1lGMXFzUMa3nb-Y0C7ZAVL09epL3ukM61mbp8sm9fpYFIdBHP9AoXQ8OI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PSxwxFMcf1vbQS21pS7dqCeilhaEzSTaTQC8qSgsiHhS8Dfm5LtRdGUfBW_-H_of-JX0vM7tWKELxNDshCyHvJflM8vJ9ANteK6eryAuB_lBI_EIpLO2IeWTtGLzQ3GYR18P66EifnZnjFfi2uAvT60MsN9xoZOT5mga4dX0WEoRaNKKfdpy0EaR-Bs-rStTk01we3--wIPuMs2gmp-tFiA58oU8qzdf7vz9YkbJw_wPa_JtZ86JzsPa05r6GVwNssp3eO97ASpy9hXaHnefgDnbZ0ikNWYZZ769b62_vfv2mdS2wfAeX3mJnWZrSmTqWTebttDu_YBQtP2HIjizh6ofcS7G3jLywF6RgJJOZHznI_B2cHuyf7H0vhswLhZclzoCxtsrUxiPOIYIFRCaRvLJ8bLV1MglTRq9SGFsrfSi9qivHg9Ro3ZQ0flCK97A6m8_iB2AuCmQKnBcidkSoKlvGyiWnlYomaJ1G8HnR-40fZMkpO8bPJh-PS0OlvMk9N4KtZd3LXozjn7V2yYjLGiSgnQvm7aQZxmOjx0maGmHKa2w4YpqMKZSuskkJh8g4go2FCzTDqL5qBMKVocTpagRfsrEfaUaz9-OE518f_6fyOrykjPZ9xMwGrHbtddyEF_6mm161n7KH_wFeRf9V
  priority: 102
  providerName: Wiley-Blackwell
Title A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12148
https://www.proquest.com/docview/3091965416
https://doaj.org/article/85f497155c8d486394efd0b1af63b929
Volume 8
WOSCitedRecordID wos000888647200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050729737
  issn: 2468-2322
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: K7-
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: PIMPY
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: WIN
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RlgMXKAJEaIlWggtIVm3vZr17Qm2VqpFoZKEiysla708aCZLUcZG4IN6BN-RJmNk4_ZGqXrg49mblrDzjmW9nJt8AvLVK1irzecJRHxKBO5TEUETMItb2znKVm0ji-rEYj9XZmS67gNuyK6tc28RoqN3cUox8j6Nj09S0Wn5YXCTUNYqyq10LjQ3YynI0wpSULZLrGAuinwEv1qykQu_ZaZsToQK1-7nhhyJd_y2MeROpRldz9OR_F7kNjzuQyfZXWvEUHvjZM2j22Xks6mCLhrIzJBFmrL1sjP359_cf8meOxf_e0pVvDQtTyqXj2AR_pD3_zqhKfsIQM7KAXg_xLtXcMtK-FREFI3rM-BGLy5_D56Ph6eFx0nVcSKxI0fL5wkhdaIswDqGXQ6jEg5UmHxhlahG4Tr2VwQ2MEdalVhZZnTuhUKohKNxI8hewOZvP_EtgteeIJdAeeHzwLstM6rM61EpKr51SoQfv1s-_sh0dOXXF-FbFtLjQNJpXUVY9eHM1d7Ei4bhz1gGJ8WoGEWfHgXkzqbr3sFKDIHSBIMoqXDjCM-GDS-vMBMlrhIo92F1Lture5mV1LdYevI-Kcc8yqsPRaR7PXt1_rx14RL3rV7Uxu7DZNpf-NTy0P9rpsunDRi7KPmwdDMflp34MFfSjduPx5NcQvylHJ-VXvPoyGv8DwnEGiA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXfgSoCy1YAg4gRU1sb-IcqqoUqq52WXFYpN6C45_tSrC7ZFNQb7xD34OH4kmYcZK2SKi3HjglsSzLjr-Z-WyPZwBeGpWWKnE8EoiHSOIKJdK0I2aQaztrhOI6BHEdZeOxOjrKP67Br-4uDLlVdjoxKGq7MLRHvi3QsOWUtDrdXX6LKGsUna52KTQaWAzd6Q9csq12Bu9wfl9xfvB-sn8YtVkFIiNjlG6X6TTPcoNUBemFRTogvEk172ulS-lFHjuTetvXWhobmzRLSm6lwp57r3CxJLDdG3BTCpWRXA2z6GJPB9lWX2RdFFSZb5tZzSmAA6UXumT3QnqAvzjtZWYcTNvBvf_tp9yHuy2JZnsN6h_Amps_hGqPHQenFbas6PSJEMe0MSeVNqe_f56RvbYs3C2mL1dr5mfkK4BlUxxUffyV0S2AKUNOzDxadeTz5FPMSLqaQBuMwn-GR3CefwSfrmWYj2F9vpi7DWClE8iVUN85nGibJDp2SelLlaYut0r5Hrzu5rswbbh1yvrxpQjH_jKnUl4EbPTgxXndZRNk5J-13hJszmtQYPBQsKimRatnCtX3Ms-QJBqFHUf6KZ23cZlon4oSqXAPNjskFa22WhUXMOrBmwDEK7pR7A8mPLw9ubqt53D7cPJhVIwG4-FTuMORHTZ-QJuwXlcnbgtume_1bFU9C1LE4PN1I_QPRTRcQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD5oFemLF1TctmpAXxQGZzKZTPJYq4vFsuxDhb6FTC7bhbq7TKeFvvkf_If9JZ6Tmd1aEEF8mplwBkLOJV-Sk-8AvHVKNqoIPCvRHjKBK5TM0o6YQ6wdvCsVt4nE9aieTNTJiZ4OuTl0F6bnh9hsuJFnpHhNDh5WPvYLTkEkmW7ecSJHEOou3BMVBlkidhbTmy0WBD9VYs3kdL8IsQNfE5QK_eHm91tTUmLuvwU3fwetadYZP_rP_j6GhwPcZPu9fTyBO2HxFNp9dprSO9iqpXMa0g2zzl201l1d__hJM5tn6RYufYXOsjinU3Vsmy3beXf6nVG-_IwhemQR5z9EvpR9y8gOe0oKRkSZ6ZHSzJ_Bt_Hn44Mv2VB7IXMixxgYait1rR0COgRhHkFTGZ20vLLKNiKWOg9ORl9ZK5zPnayLhnuhUL8xKlxSls9ha7FchBfAmlAiqsDIEHAgfFHYPBRNbJSUQXul4gjerYffuIGYnOpjnJl0QC40tXKTRm4Ebzayq56O449SH0mLGwmi0E4Ny3ZmBo80qopC1winnMKOI1ATIfq8KWyUZYOgcQR7axswg1-fmxLhlabS6XIE75O2_9INc3B4zNPbzr8Iv4YH009jc3Q4-boL21Tevk-f2YOtrr0IL-G-u-zm5-2rZO2_ABqsAso
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+higher+prediction+accuracy%E2%80%93based+alpha%E2%80%93beta+filter+algorithm+using+the+feedforward+artificial+neural+network&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Khan%2C+Junaid&rft.au=Lee%2C+Eunkyu&rft.au=Kim%2C+Kyungsup&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=8&rft.issue=4&rft.spage=1124&rft.epage=1139&rft_id=info:doi/10.1049%2Fcit2.12148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon